A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring caustic injuries from emergency department databases using automatic keyword recognition software. | LitMetric

In Italy the European Union Injury Database reports the involvement of chemical products in 0.9% of home and leisure accidents. The Emergency Department registry on domestic accidents in Italy and the Poison Control Centres record that 90% of cases of exposure to toxic substances occur in the home. It is not rare for the effects of chemical agents to be observed in hospitals, with a high potential risk of damage - the rate of this cause of hospital admission is double the domestic injury average. The aim of this study was to monitor the effects of injuries caused by caustic agents in Italy using automatic free-text recognition in Emergency Department medical databases. We created a Stata software program to automatically identify caustic or corrosive injury cases using an agent-specific list of keywords. We focused attention on the procedure's sensitivity and specificity. Ten hospitals in six regions of Italy participated in the study. The program identified 112 cases of injury by caustic or corrosive agents. Checking the cases by quality controls (based on manual reading of ED reports), we assessed 99 cases as true positive, i.e. 88.4% of the patients were automatically recognized by the software as being affected by caustic substances (99% CI: 80.6%- 96.2%), that is to say 0.59% (99% CI: 0.45%-0.76%) of the whole sample of home injuries, a value almost three times as high as that expected (p < 0.0001) from European codified information. False positives were 11.6% of the recognized cases (99% CI: 5.1%- 21.5%). Our automatic procedure for caustic agent identification proved to have excellent product recognition capacity with an acceptable level of excess sensitivity. Contrary to our a priori hypothesis, the automatic recognition system provided a level of identification of agents possessing caustic effects that was significantly much greater than was predictable on the basis of the values from current codifications reported in the European Database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187942PMC

Publication Analysis

Top Keywords

emergency department
12
caustic corrosive
8
cases
6
caustic
6
monitoring caustic
4
caustic injuries
4
injuries emergency
4
department databases
4
automatic
4
databases automatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!