The concept of targeting cancer therapeutics toward specific mutations or abnormalities in tumor cells, which are not found in normal tissues, has the potential advantages of high selectivity for the tumor and correspondingly low secondary toxicities. Many human malignancies display activating mutations in the Ras family of signal-transducing genes or over-activity of p21(Ras)-signaling pathways. Carcinoid and other neuroendocrine tumors have been similarly demonstrated to have activation of Ras signaling directly by mutations in Ras, indirectly by loss of Ras-regulatory proteins, or via constitutive activation of upstream or downstream effector pathways of Ras, such as growth factor receptors or PI(3)-kinase and Raf/mitogen-activated protein kinases. We previously reported that aberrant activation of Ras signaling sensitizes cells to apoptosis when the activity of the PKCδ isozyme is suppressed and that PKCδ suppression is not toxic to cells with normal levels of p21(Ras) signaling. We demonstrate here that inhibition of PKCδ by a number of independent means, including genetic mechanisms (shRNA) or small-molecule inhibitors, is able to efficiently and selectively repress the growth of human neuroendocrine cell lines derived from bronchopulmonary, foregut, or hindgut tumors. PKCδ inhibition in these tumors also efficiently induced apoptosis. Exposure to small-molecule inhibitors of PKCδ over a period of 24 h is sufficient to significantly suppress cell growth and clonogenic capacity of these tumor cell lines. Neuroendocrine tumors are typically refractory to conventional therapeutic approaches. This Ras-targeted therapeutic approach, mediated through PKCδ suppression, which selectively takes advantage of the very oncogenic mutations that contribute to the malignancy of the tumor, may hold potential as a novel therapeutic modality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527126 | PMC |
http://dx.doi.org/10.1530/ERC-10-0224 | DOI Listing |
Front Immunol
January 2025
Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität of Würzburg, Würzburg, Germany.
Background: The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The Aryl Hydrocarbon Receptor (AhR) pathway significantly influences immune cell regulation, impacting the effectiveness of immunotherapy and patient outcomes in melanoma. However, the specific downstream targets and mechanisms by which AhR influences melanoma remain insufficiently understood.
Methods: Melanoma samples from The Cancer Genome Atlas (TCGA) and normal skin tissues from the Genotype-Tissue Expression (GTEx) database were analyzed to identify differentially expressed genes, which were intersected with a curated list of AhR-related pathway genes.
Heliyon
January 2025
Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia.
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors.
View Article and Find Full Text PDFOncologist
January 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
Objectives: Well-differentiated neuroendocrine tumors (NET) are highly vascular tumors characterized by their expression of vascular endothelial growth factor (VEGF). This trial investigated the activity of ramucirumab, a monoclonal antibody that targets VEGF receptor-2 (VEGFR-2) and inhibits activity of VEGF, in combination with somatostatin analog therapy in patients (pts) with advanced extra-pancreatic NET.
Methods: We conducted a single-arm phase II trial enrolling pts with advanced, progressive extra-pancreatic NET.
Acta Neuropathol Commun
January 2025
Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center Unit 1374, 1155 Pressler St, Houston, TX, 77030-3721, USA.
Renal medullary carcinoma is a rare undifferentiated tumor of the kidney associated with sickle cell trait and characterized by INI1 (SMARCB1) loss. Although metastasis to lungs, lymph nodes, and bone is commonly reported, distant spread to the central nervous system almost never occurs. Here we present an unusual case of a patient with renal medullary carcinoma with metastasis to the brain following treatment which included tazemetostat, an EZH2 inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!