A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peroxisome degradation in mammals. | LitMetric

Peroxisome degradation in mammals.

IUBMB Life

Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.

Published: November 2011

This review summarizes the historical aspects of the study of peroxisome degradation in mammalian cells. Peroxisomes have diverse metabolic roles in response to environmental changes and are degraded in a preferential manner, by comparison with cytosolic proteins. This review introduces three hypotheses on the degradation mechanisms: (a) the action of the peroxisome-specific Lon protease; (b) the membrane disruption effect of 15-lipoxygenase; and (c) autophagy that sequesters and degrades the organelles by lysosomal enzymes. Among these hypotheses, autophagy is now recognized as the most important mechanism for excess peroxisome degradation. One of the most striking characteristics of peroxisomes is that they are markedly proliferated in the liver by the administration of hypolipidemic drugs and industrial plasticizers. The effects of these substances were fully reversed after withdrawal of the substances, and most of the excess peroxisomes were selectively degraded and recovered to a normal number and size. Autophagic degradation of peroxisomes has been examined using this characteristic phenomenon. Excessive peroxisome degradation that occurs after cessation of hypolipidemic drugs has been extensively investigated biochemically and morphologically. The evidence shows that the degradation of excess peroxisomes and peroxisomal enzymes is inhibited by 3-methyladenine (3-MA), a specific inhibitor of autophagy. Furthermore, in liver-specific autophagy-deficient mice, rapid removal of peroxisomes was exclusively impaired, and degradation of peroxisomal enzymes was not detected. Thus, the significant contribution of autophagic machinery to peroxisomal degradation in mammals was confirmed. However, the important question of the mechanism for the selective recognition of peroxisomes by autophagosomes remains to be fully elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.537DOI Listing

Publication Analysis

Top Keywords

peroxisome degradation
16
degradation mammals
8
degradation
8
hypolipidemic drugs
8
excess peroxisomes
8
peroxisomal enzymes
8
peroxisomes
7
peroxisome
4
mammals review
4
review summarizes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!