Background/purpose: Progressive hyperbilirubinemia and end-stage liver failure are among the most serious complications of short bowel syndrome (SBS), representing the principle cause of death in a majority of fatal cases. In the current study, we examined the effects of alpha-naphthylisothiocyanate (ANIT)-induced liver injury on intestinal adaptation in a rat model of SBS.

Methods: Male rats were divided into four groups: Sham rats underwent bowel transection (n = 8), Sham liver-injury rats underwent bowel transection and IP injection of ANIT (100 mg/kg, n = 8), SBS rats underwent a 75% bowel resection, and SBS-ANIT rats underwent bowel resection and liver injury similar to group sham-ANIT (n = 8). Fourteen days after intervention, liver biopsies and intestinal samples were obtained and evaluated for liver damage and measures of intestinal adaptation. Real time PCR and Western blotting were used to determine the level of bax and bcl-2 mRNA and protein, and p-ERK protein levels. Statistical analysis was performed using the one-way ANOVA test, with p < 0.05 considered statistically significant.

Results: All ANIT-treated animals exhibited histological evidence of liver damage that was associated with the expansion of atypical ductal proliferation near the periportal areas, intense neutrophil infiltration in the liver, increased mitotic activity, Kupfer cells hyperplasia and fatty liver degeneration. ANIT-induced liver damage in bowel resected animals was associated with a significant decrease in all parameters of intestinal adaptation including bowel and mucosal weight in jejunum (twofold decrease) and ileum (twofold decrease), mucosal DNA in jejunum (fourfold decrease), mucosal protein in jejunum (threefold decrease) and ileum (threefold decrease), villus height in jejunum (38%) and ileum (34%), and crypt depth in jejunum (24%) and ileum (30%) compared to SBS animals. Both Sham-ANIT and SBS-ANIT rats demonstrated decreased enterocyte proliferation rates that were accompanied by decreased p-ERK protein levels. Lower apoptotic rates in jejunum (40%) and ileum (52%) in SBS-ANIT rats (vs. SBS) coincided with decreased bax mRNA and protein levels.

Conclusions: In a rat model of SBS, ANIT-induced liver injury was associated with decreased enterocyte proliferation and inhibited intestinal adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00383-011-2989-yDOI Listing

Publication Analysis

Top Keywords

intestinal adaptation
20
liver injury
16
rats underwent
16
rat model
12
anit-induced liver
12
underwent bowel
12
sbs-anit rats
12
liver damage
12
liver
10
injury intestinal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!