Acoustic, piezoelectric, and dielectric nonlinearities of AlN in coupled resonator filters for high RF power levels.

IEEE Trans Ultrason Ferroelectr Freq Control

Institut de Microélectronique, Electromagnétisme et Photonique-Laboratoire d'Hyperfréquence de Chambéry (IMEP-LAHC), Minatec, Grenoble, France.

Published: October 2011

Coupled resonator filters (CRFs) are the new generation of BAW filters recently designed for the front-end modules of mobile transmission systems. Looking for designers' requirements, CRF devices have been characterized and modeled. The model based on equivalent circuits relies on material constants such as stiffness and electro-coupling coefficients, and works only for linear-mode propagation. Because of their positions between antennas and power amplifiers, they often work under high RF power, inducing nonlinear response in the AlN piezoelectric layer. In this work, we analyze for the first time the nonlinear behavior of AlN material particularly for coupled BAW resonators. To characterize the nonlinear effects in CRFs, we measure the 1-dB gain compression point (P1dB) and the intercept point (IP(3)). Then, we develop a nonlinear model of CRFs using harmonic balance (HB) simulation in commercially available software. The HB environment allows fitting simulations to measurements in terms of P(1dB) and IP(3). We find that a high RF power induces nonlinear changes in the material constants' real parts: elastic stiffness c(33) (4.9%), piezoelectric e(33) (17.4%), and permittivity ϵ(33) (5.2%). These nonlinear variations of material constants describe the nonlinear behavior of CRF devices using the same deposit process for AlN material.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2011.2065DOI Listing

Publication Analysis

Top Keywords

high power
12
coupled resonator
8
resonator filters
8
crf devices
8
material constants
8
nonlinear behavior
8
aln material
8
nonlinear
7
material
5
acoustic piezoelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!