The enzymatic synthesis of biodiesel by a high-pressure semi-continuous process in near-critical carbon dioxide (NcCO(2)) was studied. Biodiesel synthesis was evaluated in both batch and semi-continuous systems to develop an effective process. Batch processing demonstrated the advantageous properties of NcCO(2) as an alternative reaction medium. Three immobilized lipases (Novozym 435, Lipozyme RM IM, and Lipozyme TL IM from Novozymes) were tested, with Lipozyme TL IM the most effective, showing the highest conversion. Biodiesel conversion from several edible and non-edible oil feedstocks reached >92%. Higher conversion (99.0%) was obtained in a shorter time by employing repeated batch processes with optimized conditions: 44.3 g (500 mM) canola oil, a substrate molar ratio (methanol:oil) of 3:1, an enzyme loading of 20 wt% (of the oil used), at 30 °C, 100 bar, and 300 rpm agitation. The enzyme maintained 80.2% of its initial stability after being reused eight times. These results suggest that this method produces biodiesel energy-efficiently and environment-friendly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-011-0637-5 | DOI Listing |
Br J Radiol
September 2023
Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan.
Objective: Carbon-ion radiotherapy (CIRT) has demonstrated success in treating radioresistant disease within the head and neck, owing to its unique physical and radiobiological properties. Construction cost remains prohibitive; a center offering only a horizontal port may bridge this difficulty, but removal of the vertical port may prohibit treatment of disease near critical organs-at-risk. Building a center only containing a horizontal treatment port has been proposed as one method for cost savings.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2023
Huygens-Kamerlingh Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands.
Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection.
View Article and Find Full Text PDFPolymers (Basel)
February 2023
Convergent Technologies Research Group (CTRG), South East Technological University, X91 K0EK Waterford, Ireland.
Incorporating thermally labile active pharmaceutical ingredients for manufacturing multifunctional polymeric medical devices is restricted due to their tendency to degrade in the hot melt extrusion process. In this study, the potential of sub- and near-critical carbon dioxide (CO) as a reversible plasticiser was explored by injecting it into a twin-screw hot melt extrusion process of Pellethane thermoplastic polyurethane to decrease its melt process temperature. Its morphological, throughput, thermal, rheological, and mechanical performances were also evaluated.
View Article and Find Full Text PDFACS Omega
November 2022
The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Prachauthit Road, Bangmod, Bangkok10140, Thailand.
In this study, an environmentally benign carbon-based catalyst derived from extracted bagasse lignin (EL) was successfully synthesized by solvothermal carbonization and sulfonation with methane sulfonic acid (MSA). Interestingly, the results indicated that the use of MSA as a sulfonation agent made a catalyst with higher thermal stability than conventional sulfuric acid. Thus, in comparison to the catalyst prepared by using sulfuric acid, the catalyst prepared by using MSA (EL-MSA) exhibited higher catalytic activity in the esterification of stearic acid under near-critical methanol conditions.
View Article and Find Full Text PDFLab Chip
April 2022
Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
Emerging technologies like enhanced oil recovery and carbon sequestration rely on carbon dioxide water content data to ensure that pipelines remain sub-saturated to avoid corrosion and hydrate flow assurance issues. To improve throughput and confidence in the hydrate phase equilibria data to avoid pipeline blockages, further research into the carbon dioxide water content must be conducted. However, the liquid carbon dioxide regime is experimentally difficult to study and the available data disagree between studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!