A new human myeloid cell line has been established recently from the bone marrow cells of a patient with chronic myelogenous leukemia in blast crisis. The active proliferation and survival of the cells in RPMI 1640 medium containing fetal calf serum are clearly dependent on the presence of either natural or recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Despite permanent culturing in rhGM-CSF (100 U/mL), the cells do not differentiate and bear the myelomonocytic surface markers CD34, CD13, CD36, as well as HLA-DR, but not CD3, CD7, CD10, CD11b, CD14, CD20, or CD42b. The predominant karyotype, apart from tetraploidy in several cells, is 45, XX, -9, -17, -19, -22, 7p-, 9q+ (der t[9;22]), der (13q), with three additional marker chromosomes, from which one was observed in the patient's leukemic cells. On BglII-digested DNA, Southern blot analysis with bcr 5' as the probe detected two additional hybridizing restriction fragments of 8.6 and 11.0 kilobase pairs.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
Based on the antigenic similarity between tumor cells and embryonic stem cells (ESCs), several recent studies report the use of intact murine ESCs or exosomes from murine ESCs as cancer vaccines. Since the capacity for self-renewal is one of the most specialized properties shared between ESCs and a subset of tumor cells, cancer stem cells (CSCs), we investigated whether the undifferentiated state of murine ESCs is essential for the prophylactic effectiveness of an ESC-based vaccine. The undifferentiated state of ES-D3, a murine ESC line, was essential for their anchorage-independent growth potential.
View Article and Find Full Text PDFMol Cell Neurosci
December 2024
Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
Colony-stimulating factor-1-receptor (CSF1R) inhibitors have been widely used to rapidly deplete microglia from the brain, allowing the remaining microglia population to self-renew and repopulate. These new-born microglia are thought to be "rejuvenated" and have been shown to be beneficial in several disease contexts and in normal aging. Their role in Alzheimer's disease (AD) is thus of great interest as they represent a potential disease-modifying therapy.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.
In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2024
Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Acute exposure to ozone (O) causes upper and lower airway inflammation. We and others have previously demonstrated that O oxidizes lipids, particularly cholesterol, into electrophilic oxysterols, such as secosterol B (SecoB), which can adduct proteins, thus altering cellular signaling pathways. To investigate how O-derived oxysterols influence cytokine and chemokine release, nasal epithelial cells (HNECs) from healthy donors (N = 18 donors) were exposed to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!