At the onset of Drosophila metamorphosis the steroid hormone ecdysone induces a process leading to a rapid degeneration of the larval salivary glands (SGs). Ecdysone acts through the ecdysone receptor heterodimer, which activates primary response genes. In particular these genes include the Broad-Complex (BR-C) gene encoding a set of BTB/POZ-transcription factors, among which the Z1 isoform is critical for SG cell death. The timing of SG disappearance depends upon of p127 (l(2)gl) , a cytoskeletal tumor suppressor that interacts with nonmuscle myosin II heavy chain (nmMHC) encoded by the zipper (zip) gene. Reduced l(2)gl expression delays SG histolysis whereas over-expression accelerates this process without affecting larval and pupal development. However, the mechanism by which l(2)gl controls SG histolysis remains yet unknown. Here we analyze the regulation controlled by p127 (l(2)gl) and nmMHC in the cytoplasm on the association of BR-C Z1 with chromatin and remodeling factors, such as Rpd3, Sin3A, and Smrter. In wild-type SGs these factors bind to chromatin but in l(2)gl SGs they accumulate in the cytoplasm and the cortical nuclear zone (CNZ). Similar chromatin exclusion occurs in SGs of developmentally delayed zip (E(br)) /+ larvae or can be achieved by high levels of nmMHC synthesis. The present data show that p127 (l(2)gl) and nmMHC regulate the access of BR-C Z1, Rpd3, Sin3A, and Smrter to chromatin. As the interaction between p127 (l(2)gl) and nmMHC occurs in the cytoplasm, we propose that these nuclear factors are processed by p127 (l(2)gl) and then released from p127 (l(2)gl) by nmMHC to allow their binding to chromatin. This process may constitute a novel mechanism of gene regulation, which in the absence of p127 (l(2)gl) , or excessive amounts of nmMHC, could lead to a fixed configuration in the pattern of gene expression that prevents further progression of SG differentiation, and programmed cell death (PCD). Such a transcriptional block could play a critical role in the neoplastic transformation of l(2)gl tissues. 

Download full-text PDF

Source
http://dx.doi.org/10.4161/nucl.2.5.17888DOI Listing

Publication Analysis

Top Keywords

p127 l2gl
28
l2gl nmmhc
16
l2gl
11
access br-c
8
salivary glands
8
cell death
8
rpd3 sin3a
8
sin3a smrter
8
p127
7
nmmhc
7

Similar Publications

At the onset of Drosophila metamorphosis the steroid hormone ecdysone induces a process leading to a rapid degeneration of the larval salivary glands (SGs). Ecdysone acts through the ecdysone receptor heterodimer, which activates primary response genes. In particular these genes include the Broad-Complex (BR-C) gene encoding a set of BTB/POZ-transcription factors, among which the Z1 isoform is critical for SG cell death.

View Article and Find Full Text PDF

The timing of drosophila salivary gland apoptosis displays an l(2)gl-dose response.

Cell Death Differ

January 2000

Department of Developmental Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.

During Drosophila metamorphosis, larval tissues, such as the salivary glands, are histolysed whereas imaginal tissues differentiate into adult structures forming at eclosion a fly-shaped adult. Inactivation of the lethal(2)giant larvae (l(2)gl) gene encoding the cytoskeletal associated p127 protein, causes malignant transformation of brain neuroblasts and imaginal disc cells with developmental arrest at the larval-pupal transition phase. At this stage, p127 is expressed in wild-type salivary glands which become fully histolysed 12 - 13 h after pupariation.

View Article and Find Full Text PDF

The lethal(2)giant larvae gene, or 1(2)gl, encodes a widely expressed cytoskeletal protein which acts in numerous biological processes during embryogenesis and oogenesis, including cell proliferation, and morphogenetic movements. Having identified the nucleotide change occurring in the l(2)gl(ts3) sequence, we produced by site-directed mutagenesis the identical change leading to the substitution of a serine by a phenylalanine at position 311 of p127l(2)gl and introduced the modified l(2)glF311 gene into l(2)gl flies. The transgene can fully rescue the development of l(2)gl flies raised at 22 degrees C but causes drastic effects on their development at 29 degrees C confirming the temperature sensitivity of the phenylalanine substitution at position 311.

View Article and Find Full Text PDF

Homo-oligomerization domains in the lethal(2)giant larvae tumor suppressor protein, p127 of Drosophila.

J Mol Biol

December 1996

Department of Developmental Genetics, Deutches Krebsforschungszentrum, Heidelberg, Germany.

The p127 tumor suppressor protein encoded by the lethal(2)giant larvae, l(2)gl, gene of Drosophila melanogaster forms high molecular mass complexes consisting predominantly of p127 molecules. To determine whether p127 can self-assemble in the absence of other binding factors, we analyzed the size of in vitro synthesized p127 by gel filtration and found that p127 is always recovered in a high molecular mass form, demonstrating that p127 can oligomerize on its own. Previous studies have revealed that p127 may contain three homo-oligomerization domains.

View Article and Find Full Text PDF

The tumor suppressor gene, lethal(2)giant larvae (1(2)g1), is required for cell shape change of epithelial cells during Drosophila development.

Development

July 1996

Laboratoire de Génétique et Physiologie du Développement, UMR 9943 CNRS-Université, IBDM CNRS-INSERM, Université de la Méditerranée, Marseille, France.

Inactivation of the lethal(2)giant larvae (l(2)gl) gene results in malignant transformation of imaginal disc cells and neuroblasts of the larval brain in Drosophila. Subcellular localization of the l(2)gl gene product, P127, and its biochemical characterization have indicated that it participates in the formation of the cytoskeletal network. In this paper, genetic and phenotypic analyses of a temperature-sensitive mutation (l(2)glts3) that behaves as a hypomorphic allele at restrictive temperature are presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!