The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255577PMC
http://dx.doi.org/10.1038/mt.2011.212DOI Listing

Publication Analysis

Top Keywords

retinal degeneration
12
short-interfering rnas
8
induce retinal
8
clinical trials
8
cell permeation
8
sirnas
7
retinal
5
rnas induce
4
degeneration
4
tlr3
4

Similar Publications

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Retinal diseases often lead to degeneration of specific retinal cell types with currently limited therapeutic options to replace the lost neurons. Previous studies have reported that overexpression of or combinations of proneural factors in Müller glia (MG) induce regeneration of functional neurons in the adult mouse retina. Recently, we applied the same strategy in dissociated cultures of fetal human MG and although we stimulated neurogenesis from MG, our effect in 2D cultures was modest and our analysis of newborn neurons was limited.

View Article and Find Full Text PDF

A diagnosis of age-related macular degeneration (AMD) may have a significant impact on a patient's life. Therefore, it is important to consider differential diagnoses, as these can differ considerably from AMD regarding prognosis, inheritance, monitoring and therapy. Differential diagnoses include other macular diseases with drusen, drusen-like changes, monogenic retinal dystrophies, as well as a wide range of other, often rare macular diseases.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia-reperfusion injury.

Neural Regen Res

January 2025

Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.

Ischemia-reperfusion injury is a common pathophysiological mechanism in retinal degeneration. PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis, apoptosis, and necroptosis. Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia-reperfusion injury.

View Article and Find Full Text PDF

Lutein and Zeaxanthin: Source, Extraction, Stability, Bioactivity, and Functional Food Applications.

Curr Pharm Biotechnol

January 2025

Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.

Nature has been acknowledged as a fundamental source of diverse bioactive molecules. Among natural carotenoids, lutein, zeaxanthin, and their oxidative metabolites are specifically deposited in the macular region of living organisms. Lutein and zeaxanthin are carotenoids primarily found in green leafy vegetables, eggs, and various fruits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!