Rab5 is a small GTPase known to regulate vesicular trafficking during interphase. Here, we show that Rab5 also plays an unexpected role during mitotic progression. RNAi-mediated silencing of Rab5 caused defects in chromosome congression and extensive prometaphase delay, and it correlated with a severe reduction in the localization of the centromere-associated protein CENP-F to kinetochores. CENP-F is a component of the nuclear matrix required for chromosome congression that, at mitotic entry, localizes to the nuclear envelope and assembles on kinetochores, contributing to the establishment of kinetochore microtubule interactions. We found that Rab5 forms a complex with a subset of CENP-F in mitotic cells and regulates the kinetics of release of CENP-F from the nuclear envelope and its accumulation on kinetochores. Simultaneous depletion of both Rab5 and CENP-F recapitulated the mitotic defects caused by silencing of either Rab5 or CENP-F alone, indicating epistatic roles for these two proteins in the pathway that orchestrates chromosome congression. These results reveal the involvement of Rab5 in the proper execution of mitotic programs whose deregulation can undermine chromosomal stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198334 | PMC |
http://dx.doi.org/10.1073/pnas.1103516108 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.
Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany.
The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the BP-J nteracting and ubulin-ssociated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
Nat Commun
January 2025
Volastra Therapeutics, New York, NY, USA.
Chromosome instability is a prevalent vulnerability of cancer cells that has yet to be fully exploited therapeutically. To identify genes uniquely essential to chromosomally unstable cells, we mined the Cancer Dependency Map for genes essential in tumor cells with high levels of copy number aberrations. We identify and validate KIF18A, a mitotic kinesin, as a vulnerability of chromosomally unstable cancer cells.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. Electronic address:
The discovery of new small-molecule inhibitors is essential to enhancing our understanding of biological events at the molecular level and driving advancements in drug discovery. Mitotic inhibitors have played a crucial role in development of anticancer drugs. Beyond traditional microtubule inhibitors, various inhibitors targeting specific mitotic factors have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!