Copy number variants (CNVs) are widely distributed throughout the human genome, where they contribute to genetic variation and phenotypic diversity. Spontaneous CNVs are also a major cause of genetic and developmental disorders and arise frequently in cancer cells. As with all mutation classes, genetic and environmental factors almost certainly increase the risk for new and deleterious CNVs. However, despite the importance of CNVs, there is limited understanding of these precipitating risk factors and the mechanisms responsible for a large percentage of CNVs. Here we report that low doses of hydroxyurea, an inhibitor of ribonucleotide reductase and an important drug in the treatment of sickle cell disease and other diseases induces a high frequency of de novo CNVs in cultured human cells that resemble pathogenic and aphidicolin-induced CNVs in size and breakpoint structure. These CNVs are distributed throughout the genome, with some hotspots of de novo CNV formation. Sequencing revealed that CNV breakpoint junctions are characterized by short microhomologies, blunt ends, and short insertions. These data provide direct experimental support for models of replication-error origins of CNVs and suggest that any agent or condition that leads to replication stress has the potential to induce deleterious CNVs. In addition, they point to a need for further study of the genomic consequences of the therapeutic use of hydroxyurea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198378 | PMC |
http://dx.doi.org/10.1073/pnas.1109272108 | DOI Listing |
Int J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFMalar J
January 2025
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.
View Article and Find Full Text PDFAnim Biotechnol
December 2025
Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, G1V 0A6 Canada.
Faced with the burden of increasing resistance to antifungals in many fungal pathogens and the constant emergence of new drug-resistant strains, it is essential to assess the importance of various resistance mechanisms. Fungi have relatively plastic genomes and can tolerate genomic copy number variation (CNV) caused by aneuploidy and gene amplification or deletion. In many cases, these genomic changes lead to adaptation to stressful conditions, including those caused by antifungal drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!