Hippocampal LTP triggers proteasome-mediated SPAR degradation in CA1 neurons.

Synapse

Institutes of Brain Science, Fudan University, Shanghai 200032, People's Republic of China.

Published: February 2012

Activity-dependent synaptic plasticity is associated with synaptic protein turnover involving the ubiquitin proteasome system (UPS) for protein degradation. In primary hippocampal cell culture, it has been shown that increased or decreased activity of synaptic transmission can regulate the amount of postsynaptic density (PSD) proteins via UPS. However, the specific spatio-temporal dynamic of PSD protein degradation after LTP induction and its downstream signaling pathways remains to be clarify. We used confocal microscopy to monitor levels of eGFP-tagged SPAR (spine-associated Rap GTPase activating protein) expressed in acute hippocampal slices and found that LTP induction triggered a UPS-dependent decay of eGFP-SPAR fluorescence. SPAR degradation was reduced upon inhibition of cyclin-dependent kinase 5 (CDK5) as well as by a protein synthesis inhibitor. Comparison of eGFP-tagged SPAR levels with those obtained in control experiments with eGFP revealed a protein synthesis-independent component of LTP-associated SPAR degradation. This second component required UPS and NMDA receptor activation but not CDK5. We conclude that LTP triggers a down regulation of SPAR by two complementary mechanisms, one of which has previously been described to mediate homeostatic plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.20994DOI Listing

Publication Analysis

Top Keywords

spar degradation
12
ltp triggers
8
protein degradation
8
ltp induction
8
egfp-tagged spar
8
spar
6
protein
6
degradation
5
hippocampal ltp
4
triggers proteasome-mediated
4

Similar Publications

Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.

View Article and Find Full Text PDF

Numerous roles for the Alk receptor tyrosine kinase have been described in , including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output.

View Article and Find Full Text PDF

Background And Aims: Experimental studies linked dysfunctional Farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling to liver disease. This study investigated key intersections of the FXR-FGF19 pathway along the gut-liver axis and their link to disease severity in patients with cirrhosis.

Methods: Patients with cirrhosis undergoing hepatic venous pressure gradient measurement (cohort-I n = 107, including n = 53 with concomitant liver biopsy; n = 5 healthy controls) or colonoscopy with ileum biopsy (cohort-II n = 37; n = 6 controls) were included.

View Article and Find Full Text PDF

In this paper, a new concept of extra-durable and sustainable wind turbine blades is presented. The two critical materials science challenges of the development of wind energy now are the necessity to prevent the degradation of wind turbine blades for several decades, and, on the other side, to provide a solution for the recyclability and sustainability of blades. In preliminary studies by DTU Wind, it was demonstrated that practically all typical wind turbine blade degradation mechanisms (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!