Enzymatic deglycosylation followed by SDS-PAGE is a valuable method to detect glycan modifications on protein samples. Specific glycosidases were used to remove sugars from glycoproteins in a controlled fashion leaving the protein core intact; the resulting change in molecular weight could be detected as shifts in gel mobility. Alternatively, glycan-sensitive reagents were used to visualize the intensity of glycoprotein bands before and after enzyme treatment. The ease of use of these techniques, which require only basic laboratory instrumentation and reagents, makes them the methodology of choice for initial glycobiology studies. These protocols are also well suited to screen for optimal expression conditions, since multiple glycoprotein samples can be processed at once.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-352-3_13DOI Listing

Publication Analysis

Top Keywords

identification characterization
4
characterization protein
4
protein glycosylation
4
glycosylation specific
4
specific endo-
4
endo- exoglycosidases
4
exoglycosidases enzymatic
4
enzymatic deglycosylation
4
deglycosylation sds-page
4
sds-page valuable
4

Similar Publications

Celiac disease (CD) is an immune-mediated enteropathy with varied systemic involvement and association with increased morbidity and mortality. Strong clinical suspicion is the key, and diagnosis is made using histopathology and serology. Though the consumption of a strict gluten-free diet can improve symptoms and limit mucosal damage, curative therapy is still lacking.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway.

Infect Drug Resist

January 2025

Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.

Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.

View Article and Find Full Text PDF

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!