AI Article Synopsis

  • A ligand named LH can create a stable complex with cobalt, which is useful for assembling structured metallogrids involving various metal ions.
  • In solution, these metallogrids consist of a mix of different metal ions, leading to a variety of isomers due to the ligand's asymmetrical design.
  • When crystallized, however, one specific configuration appears with recognizable symmetry, influenced by interactions between the complex and surrounding anions.

Article Abstract

An unsymmetrical bis(tridentate) ligand LH in which one binding site can be readily deprotonated forms a kinetically inert [Co(III)L(2)](+) complex which can be used as a "corner" species for the "Coupe du Roi" assembly of trans,trans-[Co(2)M(2)L(4)](6+) metallogrids (M = Fe(II), Co(II), Cu(II), Zn(II)). In the mixed Co(III)/Co(II) species, the oxidation states appear to be localised. In solution, the ligand LH forms octacationic, homometallic [2 × 2] grids with the individual labile metal ions Fe(II), Co(II), Cu(II), Zn(II), seemingly as mixtures of all possible isomers arising from the unsymmetrical nature of the ligand. In the solid state, however, [Zn(4)L(4)](CF(3)SO(3))(8)·4CH(3)CN crystallises as a single species where the cation has S(4) symmetry. This stereoselectivity in the crystalline lattice is associated with interactions between the cation and triflate anions which can again be analysed in terms of the Coupe du Roi concept.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1dt11226kDOI Listing

Publication Analysis

Top Keywords

feii coii
8
coii cuii
8
cuii znii
8
structural metallo
4
metallo selectivity
4
selectivity assembly
4
assembly grid-type
4
grid-type metallosupramolecular
4
species
4
metallosupramolecular species
4

Similar Publications

Directed coordination of C/N-termini of cyano group in metal hexacyanoferrates to efficient palladium recovery: Enhanced adsorption affinity and selectivity.

Environ Res

December 2024

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

N-termini Cyano group (CN) in metal hexacyanoferrates (MHCF) have been identified as specific-affinity sites for palladium (Pd), but C-termini CN do not effectively serve as Pd adsorption sites due to their stronger bonds with the metal ligands (M), which reduces the activity and density of CN. Herein, the optimization of directional coordination of cyano group C/N-termini by modulating the electronic structure of the M (Fe, Co, and Ni) in MHCF was investigated to reinforce the Pd recovery. Spectroscopic analyses and DFT calculations revealed that NiHCF exhibited N-site mono-coordination, whereas CoHCF displayed C-site mono-coordination due to spin-exchange interactions, leading to the strengthened N-Co bonds and weakened Fe-C bonds.

View Article and Find Full Text PDF

In this study, a novel ligand, benzilmonoximethiocarbohydrazide-O-methoxybenzaldehyde (HBMToMB), was synthesized and subsequently complexed with Cu(II), Fe(II), Co(II), Ni(II), and Mn(II) ions. The metal complexes were comprehensively characterized using techniques such as NMR, IR, Mass Spectrometry, UV-Vis, elemental analysis (CHNS), and magnetic susceptibility measurements. The complexes exhibited superior antibacterial and antifungal activity compared to the free ligand.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate prediction of spin-state energetics for transition metal complexes is crucial for understanding catalytic mechanisms and discovering new materials, but existing methods are often unreliable due to their strong dependency on the computational approach.
  • A new benchmark set of spin-state energetics was created from experimental data of 17 transition metal complexes (Fe, Co, Mn, Ni), which helps establish reference values for comparing computational methods like DFT and coupled-cluster theories.
  • The study found that the coupled-cluster CCSD(T) method is the most accurate, outperforming multireference methods, while certain double-hybrid DFT methods also showed promising results compared to commonly recommended DFT approaches that performed significantly worse.
View Article and Find Full Text PDF

Mono-β-diketonate compounds have been fleetingly observed in base metal catalyzed reactions, which are of current interest as alternatives to precious metal catalyzed reactions. Their isolation has been challenging due to synthetic and structural limitations of acac-type ligands, leading to the development of a related NacNac ligand platform. Herein we report the synthesis of a β-diketone capable of kinetically stabilizing relevant catalytic intermediates.

View Article and Find Full Text PDF

Ion-Mediated Cross-Linking of Hyaluronic Acid into Hydrogels without Chemical Modification.

Biomacromolecules

December 2024

Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.

Hyaluronic acid (HA) is a biomedically relevant polymer widely explored as a component of hydrogels. The prevailing approaches for cross-linking HA into hydrogels require chemically modifying the polymer, which can increase processing steps and complicate biocompatibility. Herein, we demonstrate an alternative approach to cross-link HA that eliminates the need for chemical modifications by leveraging the interactions between metal cations and the negatively charged, ionizable functional groups on HA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!