A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. | LitMetric

Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256076PMC
http://dx.doi.org/10.1128/AAC.00432-10DOI Listing

Publication Analysis

Top Keywords

clinical strains
12
dap resistance
12
strains
9
two-component regulatory
8
regulatory system
8
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
dap
8
resistance group
8
mutations mprf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!