Objective: Spinal cord stimulation is an effective treatment for chronic neuropathic pain after spinal surgery. In addition to the most common placement of electrodes at the thoracic level for low back and leg pain, electrodes can also be placed on a cervical level in patients with chronic neck and upper limb pain. Surgical insertion of plate electrodes via an orthodromal direction requires a partial laminectomy. Therefore, the authors describe a surgical technique using retrograde insertion of a plate electrode to avoid laminectomy.
Methods: Six patients with uncontrolled neck and upper limb pain despite optimal analgesic medication were treated with a surgical electrode placed at the C1-C2 level via a retrograde placement technique without laminectomy.
Results: All patients received stimulation paresthesias at the desired regions and reported significant pain reduction in the neck and arm regions.
Conclusion: This retrograde placement of plate electrodes enables cervical lordosis to be overcome and results in adequate stimulation of the upper cervical region, which is mandatory to reduce neck and shoulder pain without laminectomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2011.03.019 | DOI Listing |
ACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China.
The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li sieve to accelerate Li desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and LiN-rich solid-electrolyte interphases.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, University College London, London, WC1E 7JE, UK.
Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.
View Article and Find Full Text PDFSmall Methods
January 2025
Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
Anode-less sodium metal batteries (SMBs) suffer from the formation of Na dendrites and inactive Na on an anode substrate though showing advantages of high energy densities and low costs. Herein, N,O co-doped carbon spheres (NOCS), which are synthesized via a scalable polymerization and pyrolysis method, are employed as a thin and stable sodiophillic nucleation layer on the Cu foil. Combined with electrochemical measurements, Na deposition morphology observations and density functional theory calculations, it is revealed that the introduced N and O heteroatoms can greatly enhance the adsorption of Na on the carbon substrate and reduce the nucleation overpotential, thus forming sufficient seeding sites and guiding homogeneous Na deposition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Flexible thermoelectric generators (FTEGs) can continuously harvest energy from the environment or the human body to supply wearable electronic devices, which should be a clean energy solution and provide an opportunity to satisfy the increasing power consumption of multimodal sensing and data transmission in wearable electronic devices. Here, the 64-pair FTEG was fabricated by introducing the plated through-hole and heterotypic electrode structures to optimize the thermal transport, showing the largely improved output power of 4.1 mW and record-high power density of 312 μW cm at a given ambient temperature of 15 °C inside a measurement equipment.
View Article and Find Full Text PDFLangmuir
January 2025
School of Microelectronics, Fudan University, Shanghai 200433, China.
Recent advances in microfluidic technology highlight electrowetting for its programmability and precision. However, traditional electrowetting chips face limitations in scalability due to fixed electrode sizes. Optoelectrowetting (OEW) offers a solution with light-controlled virtual electrodes, but droplet splitting remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!