Involvement of GPR12 in the induction of neurite outgrowth in PC12 cells.

Brain Res Bull

Advanced Institutes for Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.

Published: January 2012

GPR12, an orphan G protein-coupled receptor, constitutively activates the Gs signaling pathway and further increases intracellular cyclic AMP. GPR12 overexpression has been reported to promote neurite extension in neurons or transform neuro2a neuroblastoma cells into neuron-like cells. However, the possible effects and mechanisms of GPR12 in the differentiation of PC12 cells are still unknown. The present study shows that GPR12 overexpression induced PC12 cells differentiation into neuron-like cells with enlarged cell sizes and neuritogenesis possibly via activation of Erk1/2 signaling and significantly increased the expression of several neurite outgrowth-related genes, including Bcl-xL, Bcl-2 and synaptophysin. These findings indicate that GPR12 may play a role in neurite outgrowth during PC12 cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2011.09.020DOI Listing

Publication Analysis

Top Keywords

pc12 cells
12
neurite outgrowth
8
outgrowth pc12
8
gpr12 overexpression
8
neuron-like cells
8
cells
6
gpr12
5
involvement gpr12
4
gpr12 induction
4
neurite
4

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a type of chronic neurodegenerative disorder. There is an ongoing need for the development of new medications to address this illness. Loureirin C is known to have a protective impact on neurological disorders.

View Article and Find Full Text PDF

Neuroprotective Indole Alkaloids from the Soil-Derived Fungus sp. XZ8.

J Nat Prod

January 2025

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!