Four studies were performed to further clarify the contribution of rod/cone and intrinsically photoreceptive retinal ganglion cells to measures of entrainment, dark preference, light-induced locomotor suppression and photosomnolence. Wild type (WT), retinally degenerate (rd/rd), and melanopsin-less (OPN4⁻/⁻) mouse strains were compared. In Experiment 1, mice were exposed to a graded photoperiod in which approximately 0.26 μW/cm² irradiance diminished to dark over a 6-h interval. This method enabled "phase angle titration," with individual animals assuming activity onsets according to their sensitivity to light. WT and OPN4⁻/⁻ animals entrained with identical phase angles (effective irradiance=0.078 μW/cm²), but rd/rd mice required a more intense irradiance (0.161 μW/cm²) and entrainment occurred about 2.5 h earlier. In Experiment 2, all three strains preferred the dark side of a divided light-dark chamber until the irradiance dropped to 0.5 μW/cm² at which point, rd/rd mice no longer showed a preference. Experiments 3 and 4 determined that WT and rd/rd mice showed equivalent light-induced locomotor suppression, but the response was greatly impaired in OPN4⁻/⁻ mice. Closer examination of open field locomotion using infrared video-based methods and Any-maze(tm) software revealed two opposing effects of light. Locomotor suppression was equivalent in WT and rd/rd mice. Responses by OPN4⁻/⁻ mice varied from being absent (n=17) to normal (similar to WT and rd/rd mice; n=8). Light onset was associated with a significant, but brief, locomotion increase in WT and OPN4⁻/⁻ mice, but not in rd/rd mice. Any-maze(tm) analysis supports the view that light-induced locomotor quiescence is followed by behavioral sleep (photosomnolence), a fact that was visually validated from the raw video files. The data show that (a) classical photoreceptors, most likely rods, allow mice to prefer and entrain to very dim light such as found in natural twilight; (b) the presence of melanopsin photopigment enables light-induced locomotor suppression and photosomnolence; (c) light-induced locomotor suppression/photosomnolence is rod/cone mediated in 36% of mice lacking melanopsin, but not in 64% of the same OPN4⁻/⁻ strain; and (d) light-induced locomotor suppression encompasses an interval of behavioral sleep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3237860 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2011.09.057 | DOI Listing |
PLoS Genet
January 2025
School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2024
Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China; Department of Physiology, Shanxi Medical University, Taiyuan, China. Electronic address:
Background & Aims: Sleep disorders (SDs) are common in chronic liver diseases (CLDs). Some SDs arise from impaired internal clock and are, hence, circadian rhythm SDs (CRSDs). Bile acids (BAs), whose levels are increased in many CLDs, reciprocally interact with circadian rhythm.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles.
J Photochem Photobiol B
October 2024
College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China. Electronic address:
Previous studies have demonstrated the efficacy of betahistine mesylate in treating vertigo and angioneurotic headache, enhancing microcirculation, and facilitating histamine release. However, limited research has been conducted on the drug's potential in mitigating blue light-induced damage. Thus, this study utilized Drosophila as the model organism and employed the Siler model to investigate the impact of various concentrations of betahistine mesylate on the lifespan, under 3000 lx blue light irradiation.
View Article and Find Full Text PDFProc Biol Sci
August 2024
Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
Many environmental features are cyclic, with predictable changes across the day, seasons and latitudes. Additionally, anthropogenic, artificial-light-induced changes in photoperiod or shiftwork-driven novel light/dark cycles also occur. Endogenous timekeepers or circadian clocks help organisms cope with such changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!