Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cerebral microbleeds (CMBs) are commonly detected on MRI and have recently received an increased interest, because they are associated with vascular disease and dementia. Identification and rating of CMBs on MRI images may be facilitated by semi-automatic detection, particularly on high-resolution images acquired at high field strength. For these images, visual rating is time-consuming and has limited reproducibility. We present the radial symmetry transform (RST) as an efficient method for semi-automated CMB detection on 7.0 T MR images, with a high sensitivity and a low number of false positives that have to be censored manually. The RST was computed on both echoes of a dual-echo T2*-weighted gradient echo 7.0 T MR sequence in 18 participants from the Second Manifestations of ARTerial disease (SMART) study. Potential CMBs were identified by combining the output of the transform on both echoes. Each potential CMB identified through the RST was visually checked by two raters to identify probable CMBs. The scoring time needed to manually reject false positives was recorded. The sensitivity of 71.2% is higher than that of individual human raters on 7.0 T scans and the required human rater time is reduced from 30 to 2 minutes per scan on average. The RST outperforms published semi-automated methods in terms of either a higher sensitivity or less false positives, and requires much less human rater time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2011.09.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!