Ribosomes as sensors of heat and cold shock in Escherichia coli.

Proc Natl Acad Sci U S A

Department of Microbiology and Immunology, University of Michigan, Ann Arbor 48109-0620.

Published: August 1990

Nearly all cells respond to an increase in temperature by inducing a set of proteins, called heat shock proteins (HSPs). Because a large number of other stress conditions induce the HSPs (or at least the most abundant ones), this response is often termed the universal stress response. However, a careful study of conditions that truly mimic a temperature shift suggested that these proteins are induced in response to a change in the translational capacity of the cell. To test this directly, Escherichia coli cells were treated with antibiotics that target the prokaryotic ribosome. Two-dimensional gels were used to evaluate the ability of these drugs to alter the rate of synthesis of the HSPs. One group of antibiotics induced the HSPs, whereas a second group repressed the HSPs and induced another set of proteins normally induced in response to a cold shock. Depending on the concentration used, the induction of the heat or cold shock proteins mimicked a mild or severe temperature shift. In addition, antibiotics of the cold shock-inducing group were found to block high temperature induction of the HSPs. The results implicate the ribosome as a prokaryotic sensor for the heat and cold shock response networks, a role it may serve in eukaryotes as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54372PMC
http://dx.doi.org/10.1073/pnas.87.15.5589DOI Listing

Publication Analysis

Top Keywords

cold shock
16
heat cold
12
escherichia coli
8
coli cells
8
set proteins
8
shock proteins
8
temperature shift
8
proteins induced
8
induced response
8
hsps
6

Similar Publications

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Background: Although the association of peripheral skin temperature with infection, serious illness and death have been recognised for centuries, few studies have explicitly compared this finding with other bedside indicators of illness severity. This study compared subjectively assessed dorsal forearm skin temperature and moisture with other indicators of illness severity.

Methods: Non-interventional observational study of acutely ill medical patients admitted to a low-resource Ugandan hospital, which examined the association of subjectively assessed dorsal forearm skin temperature and other bedside findings with death within 24 h.

View Article and Find Full Text PDF

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!