Nearly all cells respond to an increase in temperature by inducing a set of proteins, called heat shock proteins (HSPs). Because a large number of other stress conditions induce the HSPs (or at least the most abundant ones), this response is often termed the universal stress response. However, a careful study of conditions that truly mimic a temperature shift suggested that these proteins are induced in response to a change in the translational capacity of the cell. To test this directly, Escherichia coli cells were treated with antibiotics that target the prokaryotic ribosome. Two-dimensional gels were used to evaluate the ability of these drugs to alter the rate of synthesis of the HSPs. One group of antibiotics induced the HSPs, whereas a second group repressed the HSPs and induced another set of proteins normally induced in response to a cold shock. Depending on the concentration used, the induction of the heat or cold shock proteins mimicked a mild or severe temperature shift. In addition, antibiotics of the cold shock-inducing group were found to block high temperature induction of the HSPs. The results implicate the ribosome as a prokaryotic sensor for the heat and cold shock response networks, a role it may serve in eukaryotes as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54372 | PMC |
http://dx.doi.org/10.1073/pnas.87.15.5589 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
January 2025
Department of Biology, Widener University, Chester, Pennsylvania, USA.
Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.
View Article and Find Full Text PDFResusc Plus
January 2025
School of Clinical and Biomedical Sciences, University of Bolton, United Kingdom.
Background: Although the association of peripheral skin temperature with infection, serious illness and death have been recognised for centuries, few studies have explicitly compared this finding with other bedside indicators of illness severity. This study compared subjectively assessed dorsal forearm skin temperature and moisture with other indicators of illness severity.
Methods: Non-interventional observational study of acutely ill medical patients admitted to a low-resource Ugandan hospital, which examined the association of subjectively assessed dorsal forearm skin temperature and other bedside findings with death within 24 h.
BMC Genomics
January 2025
College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!