Auto-reactive cytotoxic T lymphocytes play a key role in the progressive loss or destruction of melanocytes in vitiligo but the mechanism underlying the loss of self-tolerance is unknown. A deregulation of regulatory T-cell biology has recently been suggested. The analysis of the suppressive effects of peripheral T regulatory cells in vitiligo patients revealed a functional defect in seven of 15 cases. This defect was strongly correlated with disease activity. The evaluation of the percentage of peripheral regulatory T lymphocytes did not reveal any intrinsic quantitative defect. Yet, a decrease in the percentage of such cells was noted in patients with progressive forms, suggesting a recruitment of regulatory T cells from the peripheral blood to the site of injury. This was further corroborated by the significant increase of Forkhead box P3 expression in the vitiliginous skin of patients. Our data support the involvement of a functional defect of peripheral regulatory T cells in the pathogenesis of vitiligo and open new possibilities to advance therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1755-148X.2011.00920.xDOI Listing

Publication Analysis

Top Keywords

peripheral regulatory
16
regulatory cells
12
regulatory lymphocytes
8
patients progressive
8
functional defect
8
regulatory
6
peripheral
5
functional defects
4
defects peripheral
4
patients
4

Similar Publications

Background: Type 2 diabetes (T2D) has become a significant global health threat, yet its precise causes and mechanisms remain unclear. This study aims to identify gene expression patterns specific to T2D pancreatic islet cells and to explore the potential role of pancreatic stellate cells (PSCs) in T2D progression through regulatory networks involving lncRNA-mRNA interactions.

Methods: In this study, we screened for upregulated genes in T2D pancreatic islet samples using bulk sequencing (bulkseq) datasets and mapped these gene expression profiles onto three T2D single-cell RNA sequencing (scRNAseq) datasets.

View Article and Find Full Text PDF

NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control.

NPJ Aging

January 2025

Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.

Over the past five years, systemic NAD (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms.

Cytotechnology

April 2025

Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.

This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!