AI Article Synopsis

  • Researchers explored the potential of expanding human beta cells from limited islet donors for diabetes treatment, but faced challenges as the cells lost their beta-cell characteristics in culture.
  • Using a lineage-tracing technique, they found that beta-cell-derived (BCD) cells could proliferate and could be redifferentiated back into functional beta-like cells through specific soluble factors, showing signs of an epithelial transition.
  • This study is significant as it provides evidence that dedifferentiated beta cells can regain their function in the lab, indicating that expanding and redifferentiating human islet cells could be a viable strategy for producing insulin-producing cells for diabetes therapy.

Article Abstract

Background: Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.

Methodology/principal Finding: Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.

Conclusions/significance: These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184150PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025566PLOS

Publication Analysis

Top Keywords

bcd cells
20
cells
15
beta cells
12
human islet
12
insulin-producing cells
8
adult human
8
islet cells
8
beta-cell genes
8
redifferentiated cells
8
gene expression
8

Similar Publications

Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin.

Vaccines (Basel)

January 2025

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.

: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Proteins that selectively bind to a target of interest are foundational components of research pipelines, diagnostics, and therapeutics. Current immunization-based, display-based, and computational approaches for discovering binders are laborious and time-consuming - taking months or more, suffer from high false positives - necessitating extensive secondary screening, and have a high failure rate, especially for disordered proteins and other challenging target classes. Here we establish Phage-Assisted Non-Continuous Selection of Protein Binders (PANCS-binders), an selection platform that links the life cycle of M13 phage to target protein binding though customized proximity-dependent split RNA polymerase biosensors, allowing for complete and comprehensive high-throughput screening of billion-plus member protein variant libraries with high signal-to-noise.

View Article and Find Full Text PDF

Comprehensive analyses reveal the promising value of gasdermins as prognostic biomarkers and immunotherapeutic targets in head and neck squamous cell carcinoma.

Heliyon

January 2025

Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.

Background: In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC.

Methods: We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets.

View Article and Find Full Text PDF

In pediatric hematopoietic cell transplantation (HCT) recipients, transplanted donor cells may need to function far beyond normal human lifespan. Here, we investigated the risk of clonal hematopoiesis (CH) in 144 pediatric long-term HCT survivors and 258 non-transplanted controls. CH was detected in 16% of HCT recipients and 8% of controls, at variant allele frequencies (VAFs) of 0.

View Article and Find Full Text PDF

Mechanisms of Vitamins Inhibiting Ferroptosis.

Antioxidants (Basel)

December 2024

College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.

Ferroptosis is an iron-dependent form of cell death, which is characterized by the uncontrolled and overwhelming peroxidation of cell membrane lipids. Ferroptosis has been implicated in the progression of various pathologies, including steatotic liver, heart failure, neurodegenerative diseases, and diabetes. Targeted inhibition of ferroptosis provides a promising strategy to treat ferroptosis-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!