The melanocortin-3 receptor (MC3R) gene is pleiotropic, influencing body composition, natriuresis, immune function, and entrainment of circadian rhythms to nutrient intake. MC3Rs are expressed in hypothalamic and limbic regions of the brain and in peripheral tissues. To investigate the roles of central MC3Rs, we inserted a "lox-stop-lox" (LoxTB) 5' of the translation initiation codon of the mouse Mc3r gene and reactivated transcription using neuron-specific Cre transgenic mice. As predicted based on earlier observations of Mc3r knock-out mice, Mc3r(TB/TB) mice displayed reduced lean mass, increased fat mass, and accelerated diet-induced obesity. Surprisingly, rescuing Mc3r expression in the nervous system using the Nestin-Cre transgene only partially rescued obesity in chow-fed conditions and had no impact on the accelerated diet-induced obesity phenotype. The ventromedial hypothalamus (VMH), a critical node in the neural networks regulating feeding-related behaviors and metabolic homeostasis, exhibits dense Mc3r expression relative to other brain regions. To target VMH MC3R expression, we used the steroidogenic factor-1 Cre transgenic mouse. Although restoring VMH MC3R signaling also had a modest impact on obesity, marked improvements in metabolic homeostasis were observed. VMH MC3R signaling was not sufficient to rescue the lean mass phenotype or the regulation of behaviors anticipating food anticipation. These results suggest that actions of MC3Rs impacting on energy homeostasis involve both central and peripheral sites of action. The impact of central MC3Rs on behavior and metabolism involves divergent pathways; VMH MC3R signaling improves metabolic homeostasis but does not significantly impact on the expression of behaviors anticipating nutrient availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220494PMC
http://dx.doi.org/10.1074/jbc.M111.278374DOI Listing

Publication Analysis

Top Keywords

vmh mc3r
16
mc3r expression
12
metabolic homeostasis
12
mc3r signaling
12
mc3r
9
melanocortin-3 receptor
8
roles central
8
central peripheral
8
energy homeostasis
8
mc3r gene
8

Similar Publications

The melanocortin-3 receptor (MC3R) acts presynaptically to regulate GABA release from agouti-related protein (AgRP) nerve terminals and thus may be a negative regulator of multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of MC3R in regulating the response to various anorexigenic agents. Our findings reveal that genetic deletion or pharmacological inhibition of MC3R improves the dose responsiveness to Glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss.

View Article and Find Full Text PDF

The ventromedial hypothalamus (VMH) is a critical neural node that senses blood glucose and promotes glucose utilization or mobilization during hypoglycemia. The VMH neurons that control these distinct physiologic processes are largely unknown. Here, we show that melanocortin 3 receptor ()-expressing VMH neurons (VMH) sense glucose changes both directly and indirectly via altered excitatory input.

View Article and Find Full Text PDF

Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus.

View Article and Find Full Text PDF

Prolyl carboxypeptidase mRNA expression in the mouse brain.

Brain Res

January 2014

Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Ob/Gyn & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA. Electronic address:

Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain.

View Article and Find Full Text PDF

Deletion of miRNA processing enzyme Dicer in POMC-expressing cells leads to pituitary dysfunction, neurodegeneration and development of obesity.

Mol Metab

November 2013

Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain ; Department of Endocrinology and Nutrition, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain.

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. However, their potential role in the central regulation of whole-body energy homeostasis is still unknown. In this study we show that the expression of Dicer, an essential endoribonuclease for miRNA maturation, is modulated by nutrient availability and excess in the hypothalamus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!