Desmin intermediate filaments intimately surround myofibrils in vertebrate muscle forming a mesh-like filament network. Desmin attaches to sarcomeres through its high-affinity association with nebulin, a giant F-actin binding protein that co-extends along the length of actin thin filaments. Here, we further investigated the functional significance of the association of desmin and nebulin in cultured primary myocytes to address the hypothesis that this association is key in integrating myofibrils to the intermediate filament network. Surprisingly, we identified eight peptides along the length of desmin that are capable of binding to C-terminal modules 160-170 in nebulin. In this study, we identified a targeted mutation (K190A) in the desmin coil 1B region that results in its reduced binding with the nebulin C-terminal modules. Using immunofluorescence microscopy and quantitative analysis, we demonstrate that expression of the mutant desmin K190A in primary myocytes results in a significant reduction in assembled endogenous nebulin and desmin at the Z-disc. Non-uniform actin filaments were markedly prevalent in myocytes expressing GFP-tagged desmin K190A, suggesting that the near-crystalline organization of actin filaments in striated muscle depends on a stable interaction between desmin and nebulin. All together, these data are consistent with a model in which Z-disc-associated nebulin interacts with desmin through multiple sites to provide efficient stability to satisfy the dynamic contractile activity of myocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196858 | PMC |
http://dx.doi.org/10.1242/jcs.087080 | DOI Listing |
Am J Case Rep
December 2024
Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Pathology, Analiza, 28001 Madrid, Spain.
Atypical polypoid adenomyoma (APA) is a benign uterine lesion with a premalignant potential and occurs in women of reproductive age. The histological pattern is characterized by irregular epithelial proliferation and muscular stroma. Based on a case report, we performed a systematic review of the literature to assess the main immunohistochemical and molecular markers that contribute to its differential diagnosis against endometrial adenocarcinoma (EC).
View Article and Find Full Text PDFAnn Ital Chir
December 2024
Department of Pathology, Bakirkoy Dr. Sadi Konuk Education and Research Hospital, 34147 İstanbul, Türkiye.
Aim: We report a case of proliferative myositis (PM) of the breast, which is the second reported in the English literature.
Case Presentation: A 49-year-old woman underwent surgery due to a fibroadenoma in the right and phyllodes tumor in the left breast. One month after these surgeries, a right breast mass rapidly grew at the surgical site, and biopsy did not provide a diagnosis.
Adv Healthc Mater
December 2024
Evolved.Bio, 280 Joseph Street, Kitchener, Ontario, N2G4Z5, Canada.
Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!