Copper amine oxidases (CAOs) catalyse the oxidation of various aliphatic amines to the corresponding aldehydes, ammonia and hydrogen peroxide. Although CAOs from various organisms share a highly conserved active-site structure including a protein-derived cofactor, topa quinone (TPQ), their substrate specificities differ considerably. To obtain structural insights into the substrate specificity of a CAO from Arthrobacter globiformis (AGAO), we have determined the X-ray crystal structures of AGAO complexed with irreversible inhibitors that form covalent adducts with TPQ. Three hydrazine derivatives, benzylhydrazine (BHZ), 4-hydroxybenzylhydrazine (4-OH-BHZ) and phenylhydrazine (PHZ) formed predominantly a hydrazone adduct, which is structurally analogous to the substrate Schiff base of TPQ formed during the catalytic reaction. With BHZ and 4-OH-BHZ, but not with PHZ, the inhibitor aromatic ring is bound to a hydrophobic cavity near the active site in a well-defined conformation. Furthermore, the hydrogen atom on the hydrazone nitrogen is located closer to the catalytic base in the BHZ and 4-OH-BHZ adducts than in the PHZ adduct. These results correlate well with the reactivity of 2-phenylethylamine and tyramine as preferred substrates for AGAO and also explain why benzylamine is a poor substrate with markedly decreased rate constants for the steps of proton abstraction and the following hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvr125DOI Listing

Publication Analysis

Top Keywords

structural insights
8
insights substrate
8
substrate specificity
8
copper amine
8
irreversible inhibitors
8
bhz 4-oh-bhz
8
substrate
5
specificity bacterial
4
bacterial copper
4
amine oxidase
4

Similar Publications

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Background: Congenital factor VII (FVII) deficiency is a genetic disorder characterized by decreased FVII activity, which sometimes leads to fatal bleeding. Numerous variants have been found in FVII deficiency, but mutations vary among patients. Each mutation deserves further exploration for each patient at risk of bleeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!