AI Article Synopsis

  • Researchers found that a process called epithelial-mesenchymal transition (EMT) may help create a type of cell called fibroblasts in a lung disease known as idiopathic pulmonary fibrosis.
  • They used special mice that have cells that glow green to study how lung cells change after injury and what materials in the environment affect these changes.
  • The study showed that when lung cells were exposed to type I collagen, they changed shape and began to act more like fibroblasts, which is linked to a specific signaling pathway that helps regulate these changes.

Article Abstract

Evidence suggests epithelial-mesenchymal transition (EMT) as one potential source of fibroblasts in idiopathic pulmonary fibrosis. To assess the contribution of alveolar epithelial cell (AEC) EMT to fibroblast accumulation in vivo following lung injury and the influence of extracellular matrix on AEC phenotype in vitro, Nkx2.1-Cre;mT/mG mice were generated in which AECs permanently express green fluorescent protein (GFP). On days 17-21 following intratracheal bleomycin administration, ~4% of GFP-positive epithelial-derived cells expressed vimentin or α-smooth muscle actin (α-SMA). Primary AECs from Nkx2.1-Cre;mT/mG mice cultured on laminin-5 or fibronectin maintained an epithelial phenotype. In contrast, on type I collagen, cells of epithelial origin displayed nuclear localization of Smad3, acquired spindle-shaped morphology, expressed α-SMA and phospho-Smad3, consistent with activation of the transforming growth factor-β (TGFβ) signalling pathway and EMT. α-SMA induction and Smad3 nuclear localization were blocked by the TGFβ type I receptor (TβRI, otherwise known as Alk5) inhibitor SB431542, while AEC derived from Nkx2.1-Cre;Alk5(flox/KO) mice did not undergo EMT on collagen, consistent with a requirement for signalling via Alk5 in collagen-induced EMT. Inability of a pan-specific TGFβ neutralizing antibody to inhibit effects of collagen together with absence of active TGFβ in culture supernatants is consistent with TGFβ ligand-independent activation of Smad signalling. These results support the notion that AECs can acquire a mesenchymal phenotype following injury in vivo and implicate type I collagen as a key regulator of EMT in AECs through signalling via Alk5, likely in a TGFβ ligand-independent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012689PMC
http://dx.doi.org/10.1002/path.3016DOI Listing

Publication Analysis

Top Keywords

transforming growth
8
growth factor-β
8
type receptor
8
epithelial-mesenchymal transition
8
nkx21-cremt/mg mice
8
type collagen
8
nuclear localization
8
signalling alk5
8
tgfβ ligand-independent
8
emt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!