Although several studies propose that the integrity of neuronal assemblies may underlie a phenomenon referred to as awareness, none of the known studies have explicitly investigated dynamics and functional interactions among neuronal assemblies as a function of consciousness expression. In order to address this question, EEG operational architectonics analysis (Fingelkurts and Fingelkurts 2001, 2008) was conducted in patients in minimally conscious (MCS) and vegetative states (VS) to study the dynamics of neuronal assemblies and operational synchrony among them as a function of consciousness expression. We found that in minimally conscious patients and especially in vegetative patients neuronal assemblies got smaller, their life span shortened and they became highly unstable. Furthermore, we demonstrated that the extent/volume and strength of operational synchrony among neuronal assemblies was smallest or even absent in VS patients, intermediate in MCS patients, and highest in healthy fully conscious subjects. All findings were similarly observed in EEG alpha as well as beta1 and beta2 frequency oscillations. The presented results support the basic tenets of operational architectonics theory of brain-mind functioning and suggest that EEG operational architectonics analysis may provide an objective and accurate means of assessing signs of (un)consciousness in patients with severe brain injuries. Therefore, this methodological approach may complement the existing "gold standard" of behavioral assessment of this population of challenging patients and inform the diagnostic and treatment decision-making processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10339-011-0416-xDOI Listing

Publication Analysis

Top Keywords

neuronal assemblies
20
operational architectonics
16
patients
8
patients severe
8
function consciousness
8
consciousness expression
8
eeg operational
8
architectonics analysis
8
minimally conscious
8
operational synchrony
8

Similar Publications

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Background: High-resolution brain imaging is crucial in clinical diagnosis and neuroscience, with ultra-high field strength MRI systems ( ) offering significant advantages for imaging neuronal microstructures. However, achieving magnetic field homogeneity is challenging due to engineering faults during the installation of superconducting strip windings and the primary magnet.

Purpose: This study aims to design and optimize active superconducting shim coils for a 7 T animal MRI system, focusing on the impact of safety margin, size, and adjustability of the second-order shim coils on the MRI system's optimization.

View Article and Find Full Text PDF

Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.

View Article and Find Full Text PDF

Human Kv1.3, encoded by , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.

View Article and Find Full Text PDF

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!