A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide infused in the solitary tract nucleus blocks brain glucose retention induced by carotid chemoreceptor stimulation. | LitMetric

Previous work has shown that the carotid body glomus cells can function as glucose sensors. The activation of these chemoreceptors, and of its afferent nucleus in the brainstem (solitary tract nucleus - STn), induces rapid changes in blood glucose levels and brain glucose retention. Nitric oxide (NO) in STn has been suggested to play a key role in the processing of baroreceptor signaling initiated in the carotid sinus. However, the relationship between changes in NO in STn and carotid body induced glycemic changes has not been studied. Here we investigated in anesthetized rats how changes in brain glucose retention, induced by the local stimulation of carotid body chemoreceptors with sodium cyanide (NaCN), were affected by modulation of NO levels in STn. We found that NO donor sodium nitroprusside (SNP) micro-injected into STn completely blocked the brain glucose retention reflex induced by NaCN chemoreceptor stimulation. In contrast, NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) increased brain glucose retention reflex compared to controls or to SNP rats. Interestingly, carotid body stimulation doubled the expression of nNOS in STn, but had no effect in iNOS. NO in STn could function to terminate brain glucose retention induced by carotid body stimulation. The work indicates that NO and STn play key roles in the regulation of brain glucose retention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2011.09.003DOI Listing

Publication Analysis

Top Keywords

brain glucose
28
glucose retention
28
carotid body
20
retention induced
12
glucose
9
nitric oxide
8
solitary tract
8
tract nucleus
8
induced carotid
8
chemoreceptor stimulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!