BARD1 heterodimerizes with BRCA1, forming an E3 ubiquitin ligase that functions at nuclear foci to repair DNA damage and the centrosome to regulate mitosis. We compared BARD1 recruitment at these structures using fluorescence recovery after photobleaching assays to measure YFP-BARD1 dynamics in live cells. In nuclei at ionizing radiation-induced foci, 20% of the BARD1 pool was immobile and 80% of slow mobility exhibiting a recovery time >500 s. In contrast, at centrosomes 83% of BARD1 was rapidly mobile with extremely fast turnover (recovery time ~20s). The ~25-fold faster exchange of BARD1 at centrosomes correlated with BRCA1-independent recruitment. We mapped key targeting sequences to a combination of the N and C-termini, and showed that mutation of the nuclear export signal reduced centrosome localization by 50%, revealing a role for CRM1. Deletion of the sequence 128-550 increased BARD1 turnover at the centrosome, consistent with a role in transient associations. Conversely, the cancer mutation Q564H reduced turnover by 25%. BARD1 is one of the most highly mobile proteins yet detected at the centrosome, and in contrast to its localization at DNA repair foci, which requires dimerization with BRCA1, targeting of BARD1 to the centrosome occurs prior to heterodimerization and its rapid turnover may provide a mechanism to regulate dimer formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2011.09.024 | DOI Listing |
Methods Mol Biol
November 2024
Department of Cancer Biology, Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
FOXO3 is a transcription factor that mainly exerts its functions in the cell nucleus. The amino acid sequence of FOXO3 contains a nuclear localization sequence (NLS) and a nuclear export sequence (NES) allowing for nuclear/cytoplasmic shuttling that plays an important role in regulating FOXO3 activity. Nuclear accumulation of FOXO3 proteins can be the result of translocation to the nucleus triggered by upstream regulatory input or trapping of FOXO3 within the nucleus through the inhibition of its nuclear export via the receptor CRM1.
View Article and Find Full Text PDFInflammopharmacology
November 2024
Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD).
View Article and Find Full Text PDFJ Chem Inf Model
October 2024
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
CRM1 (chromosomal region maintenance 1, also referred to as exportin 1 or XPO1) plays a crucial role in maintaining the appropriate nuclear levels of tumor suppressor proteins (TSPs), growth regulatory proteins (GRPs), and antiapoptotic proteins, thereby contributing significantly to their anticancer effects. Dysregulation of CRM1-mediated nuclear transport, observed in a range of cancers such as colon cancer as well as autoimmune diseases, highlights its significance in various disease processes. In this paper, we employed a customized structure-based virtual screening campaign to search for novel covalent CRM1 inhibitors and purchased 50 potentially active compounds for in vitro bioassays.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2024
Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!