The gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), replicates to high titers in some human cell lines and is able to infect non-human primates. To determine whether APOBEC3 (A3) proteins restrict XMRV infections in a non-human primate model, we sequenced proviral DNA from peripheral blood mononuclear cells of XMRV-infected rhesus macaques. Hypermutation characteristic of A3DE, A3F and A3G activities was observed in the XMRV proviral sequences in vivo. Furthermore, expression of rhesus A3DE, A3F, or A3G in human cells inhibited XMRV infection and caused hypermutation of XMRV DNA. These studies show that some rhesus A3 isoforms are highly effective against XMRV in the blood of a non-human primate model of infection and in cultured human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208790PMC
http://dx.doi.org/10.1016/j.virol.2011.08.030DOI Listing

Publication Analysis

Top Keywords

xenotropic murine
8
murine leukemia
8
leukemia virus-related
8
virus-related virus
8
dna peripheral
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
apobec3 proteins
8
non-human primate
8

Similar Publications

Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance.

View Article and Find Full Text PDF

Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma?

Mol Carcinog

December 2024

The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.

Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients.

View Article and Find Full Text PDF

Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1.

Neuron

September 2024

Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • Scientists discovered that problems with phosphate (Pi) levels in the brain can cause brain calcification and worsen brain damage.
  • They found that certain genes, Pit2 and Xpr1, are really important for moving Pi in brain cells called astrocytes, which help control Pi levels.
  • By fixing the problems with these genes in mice, they were able to reduce brain calcification, suggesting that boosting how astrocytes handle Pi could be a good way to help treat brain issues.
View Article and Find Full Text PDF

Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen.

View Article and Find Full Text PDF

Homeostatic coordination of cellular phosphate uptake and efflux requires an organelle-based receptor for the inositol pyrophosphate IP8.

Cell Rep

June 2024

Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Synaptic & Developmental Plasticity Group, Neurobiology Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA. Electronic address:

Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!