European consumers increasingly attach value to process characteristics of food. Although beef technologies are hardly communicated to consumers, providing consumer-oriented information about technology application might increase perceived transparency and consumer acceptance. This study investigates how information about beef technologies influences consumer expectations and liking of beef. Beef consumers in Belgium (n = 108) and Norway (n = 110) participated in an information experiment combined with sensory testing in which each consumer tasted three beef muscles treated with different technologies: unprocessed tenderloin M. Psoas major, muscle profiled M. Infraspinatus, and marinated (by injection) M. Semitendinosus. The findings indicate that detailed information about beef technologies can enhance consumers' expectations and liking of beef. However, this effect differs between countries and beef technologies. Information becomes either less relevant when the product is actually tasted, as indicated by the findings in Norway, or more relevant when information is confirmed by own experience during tasting, as indicated by the findings in Belgium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meatsci.2011.09.005 | DOI Listing |
Int J Food Microbiol
January 2025
Unit of Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
The increasing popularity of sous-vide (SV) cooking necessitates research into the microbiological quality, sensory changes, and shelf life of SV products. Studies show that SV cooking significantly reduces the levels of meat microbiota and pathogens, positively affecting the shelf life and safety of SV products. However, the meat spoilage organism Clostridium estertheticum can survive SV cooking as it can produce heat-tolerant spores.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Background: Muscle and adipose tissue are the most critical indicators of beef quality, and their development and function are regulated by noncoding RNAs (ncRNAs). However, the differential regulatory mechanisms of ncRNAs in muscle and adipose tissue remain unclear.
Results: In this study, 2,343 differentially expressed mRNAs (DEMs), 235 differentially expressed lncRNAs (DELs), 95 differentially expressed circRNAs (DECs) and 54 differentially expressed miRNAs (DEmiRs) were identified in longissimus dorsi muscle (LD), subcutaneous fat (SF) and perirenal fat (VF) in Qinchuan beef cattle.
Biomater Adv
January 2025
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.
View Article and Find Full Text PDFClin Nutr
January 2025
Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Preventive Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States; School of Natural Sciences, Technology and Environmental Studies, Södertörn University Sweden, Sweden. Electronic address:
Objective: Meat intake is suggested to affect gut microbiome composition and the risk of chronic diseases. We aimed to identify meat-associated gut microbiome features and their association with host factors.
Design: Gut microbiota species were profiled by deep shotgun metagenomics sequencing in 9669 individuals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!