The association between daily variations in urban air quality and mortality has been well documented using time series statistical methods. This approach assumes a constant association over time. We develop a space-time dynamic model that relaxes this assumption, thus more directly examining the hypothesis that improvements in air quality translate into improvements in public health. We postulate a Bayesian hierarchical two-level model to estimate annual mortality risks at regional and national levels and to track both risk and heterogeneity of risk within and between regions over time. We illustrate our methods using daily nitrogen dioxide concentrations (NO2) and nonaccidental mortality data collected for 1984-2004 in 24 Canadian cities. Estimates of risk and heterogeneity are compared by cause of mortality (cardio-pulmonary [CP] versus non-CP) and season, respectively. Over the entire period, the NO2 risk for CP mortality was slightly lower but with a narrower credible interval than that for non-CP mortality, mainly due to an unusually low risk for a single year (1998). Warm season NO2 risk was higher than cold season risk for both CP and non-CP mortality. For 21 years overall there were no significant differences detected among the four regional NO2 risks. We found overall that there was no strong evidence for time trends in NO2 risk at national or regional levels. However, an increasing linear time trend in the annual between-region heterogeneities was detected, which suggests the differences in risk among the four regions are getting larger, and further studies are necessary to understand the increasing heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1539-6924.2011.01684.xDOI Listing

Publication Analysis

Top Keywords

no2 risk
12
risk
10
national regional
8
mortality
8
bayesian hierarchical
8
hierarchical two-level
8
two-level model
8
air quality
8
risk heterogeneity
8
risk regions
8

Similar Publications

Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort.

View Article and Find Full Text PDF

Sensitive Months for Green Spaces' Impact on Macrosomia and Interaction with Air Pollutants: A Birth Cohort Study.

Environ Pollut

January 2025

School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; The Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 751000, China. Electronic address:

Macrosomia poses significant health risks to mother and fetuses, yet the protective sensitive window for the effects of green space resources on the risk of macrosomia remains unexplored. This study identified sensitive windows of green space exposure and examined the interactions with air pollutants. In a study of 221,380 full-term newborns delivered at the Hospital, from 2017 to 2021, Normalized Difference Vegetation Index (NDVI) and atmospheric pollutant concentrations were matched to participants based on their residences in the Ningxia region.

View Article and Find Full Text PDF

Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.

Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.

Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.

View Article and Find Full Text PDF

Antibiotic resistance genes (ARGs) in microorganisms and their indications for the nitrogen/sulfur cycle in the East China Sea sediments.

J Hazard Mater

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.

Antibiotic resistance genes (ARGs) are emerging environmental pollutants, posing an escalating threat to public health and environmental security worldwide. However, the relationship between ARGs and microbial communities in the environment, as well as their ecological effects on the microbe-mediated materials cycle remain unclear. In this study, we investigated the spatial distribution pattern, influence mechanism, relationship with microorganisms, and their effects on the elemental cycling of ARGs in East China Sea sediments.

View Article and Find Full Text PDF

Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!