Background: Hepatic steatosis is an established risk factor for complications following major hepatic resection. Pharmacological options to reverse steatosis prior to surgery, however, are lacking. We hypothesized that treatment with the pharmacologic tumor necrosis factor-α converting enzyme (TACE)-inhibitor Marimastat would reverse established steatosis, leading to improved outcome following hepatectomy.
Methodology/principal Findings: C57BL/6 male mice were fed a high fat diet for 9 weeks to establish obesity, hepatic steatosis and insulin resistance, and were administered either Marimastat or vehicle for an additional 2 or 4 weeks. Leptin deficient, hyperinsulinemic ob/ob mice were treated with Marimastat for 4 weeks. Hepatic steatosis was quantified by magnetic resonance spectroscopy and confirmed by histology. After two weeks, Marimastat-treated animals significantly improved surrogate markers for insulin sensitivity and liver histology, and experienced a 66% decrease in steatosis (P = 0.010). These findings were confirmed in ob/ob mice. Transcripts related to fatty acid synthesis were significantly downregulated in Marimastat-treated animals. Following pre-treatment with Marimastat or vehicle for two weeks, high fat fed C57BL/6 mice were subjected to two-thirds hepatectomy. Post-operative liver injury as quantified by serum aspartate aminotransferase levels and alanine aminotransferase levels was significantly decreased by 57% (P = 0.020) and 44% (P = 0.032) respectively, compared to controls.
Conclusion/significance: Treatment with the TACE-inhibitor Marimastat improved surrogate markers for insulin sensitivity and reversed steatosis in mouse models of diet-induced obesity and leptin deficiency, thereby attenuating post-operative injury following hepatectomy. This may suggest a potential therapeutic role in patients with fatty liver disease; especially those who need to undergo hepatic resection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181348 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025587 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!