Background: Epithelial-mesenchymal transition (EMT) changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.

Methods And Findings: Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs) in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.

Conclusions: Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184133PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025354PLOS

Publication Analysis

Top Keywords

transcriptional networks
8
epithelial-mesenchymal transition
8
epithelial cells
8
transcription factors
8
networks epithelial-mesenchymal
4
transition background
4
background epithelial-mesenchymal
4
emt
4
transition emt
4
emt changes
4

Similar Publications

In silico analysis of non-conventional gene targets for genetic interventions to enhance fatty acid production: a review.

Mol Biol Rep

January 2025

Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.

Since the 1990s, fatty acids (FA) have drawn significant industrial attention due to their diverse applications creating a demand for biological systems capable of producing high FA titers. While various strategies have been explored to achieve this, many of the conventional approaches rely on extensive genetic manipulations, which often result in strain instability, thus limiting its potential to yield better FA titers. Moreover, stresses such as pH, osmotic, and oxidative imbalances generated during FA production aggravate these challenges, further limiting FA titers.

View Article and Find Full Text PDF

Background: Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied.

View Article and Find Full Text PDF

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples.

Drug Metab Dispos

January 2025

Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida. Electronic address:

Many factors cause interperson variability in the activity and expression of the cytochrome P450 (CYP) drug-metabolizing enzymes in the liver, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors are associated with CYP expression, with estrogen receptor α (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the 2 top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown.

View Article and Find Full Text PDF

Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!