Background: Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity.
Methodology/principal Findings: A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected).
Conclusions/significance: This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183092 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024567 | PLOS |
One Health
December 2021
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
Fascioliasis is a worldwide emerging snail-borne zoonotic trematodiasis with a great spreading capacity linked to animal and human movements, climate change, and anthropogenic modifications of freshwater environments. South America is the continent with more human endemic areas caused by , mainly in high altitude areas of Andean regions. The Peruvian Cajamarca area presents the highest human prevalences reported, only lower than those in the Bolivian Altiplano.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
April 2020
USR 3278 CNRS-EPHE-UPVD, CRIOBE, PSL Research University, Perpignan, France.
The Lymnaeidae constitute a family of freshwater gastropod molluscs whose diversity and ecology have been infrequently studied throughout Colombia. Some lymnaeid species act as intermediate hosts of trematode parasites, which are of great importance in both the veterinary and medical fields. Among trematode parasites, Fasciola hepatica is best known for being an important parasite of sheep and cattle for decades and causes significant economic losses in these livestock species.
View Article and Find Full Text PDFActa Parasitol
December 2019
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
Purpose: Fascioliasis is a freshwater snail-borne zoonotic trematodiasis of high pathogenicity and wide veterinary repercussions. In South America, moreover, it causes serious public health problems, with high human infection rates in Andean countries. Ecuador offers a worrying risky scenario due to its physiography, including many human infection reports and animal endemicity throughout its Andean highlands.
View Article and Find Full Text PDFVet Parasitol
February 2018
MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France; Département de Biologie-Ecologie, Faculté des Sciences, Université Montpellier, Montpellier, France.
Parasit Vectors
August 2012
Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain.
Background: Human and animal fascioliasis is emerging in many world regions, among which Andean countries constitute the largest regional hot spot and Peru the country presenting more human endemic areas. A survey was undertaken on the lymnaeid snails inhabiting the hyperendemic area of Cajamarca, where human prevalences are the highest known among the areas presenting a "valley transmission pattern", to establish which species are present, genetically characterise their populations by comparison with other human endemic areas, and discuss which ones have transmission capacity and their potential implications with human and animal infection.
Methods: Therefore, ribosomal DNA ITS-2 and ITS-1, and mitochondrial DNA 16S and cox1 were sequenced by the dideoxy chain-termination method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!