Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1208891 | DOI Listing |
Acc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124 China. Electronic address:
Photocatalytic CO reduction technology plays a significant role in the energy and environmental sectors, highlighting the necessity for developing high-efficiency and stable catalysts. In this study, a novel photocatalyst, xNiCoO/CN (x = 1, 3, and 5 wt%), was synthesized by depositing zeolitic imidazolate framework-67 (ZIF-67)-derived nickel cobaltate (NiCoO) hollow nanocages onto porous graphitic carbon nitride (g-CN, CN) nanosheets for photocatalytic CO reduction. Under visible light irradiation, the resulting 3NiCoO/CN photocatalyst demonstrated exceptional CO yields of up to 2879.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Graphene oxide (GO)-based membranes have demonstrated great potential in water treatment. However, microdefects in the framework of GO membranes induced by the imperfect stacking of GO nanosheets undermine their size-sieving ability and structural stability in aqueous systems. This study proposes a targeted growth approach by growing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals precisely to patch microdefects as well as to cross-link the porous graphene oxide (PGO) flakes coated on the outer surface of the hollow fiber (HF) alumina substrate (named the hybrid PGO/ZIF-8 membrane).
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Developing cost-effective ruthenium (Ru)-based HER electrocatalysts as alternatives to commercial Pt/C is crucial for the advancement of proton exchange membrane water electrolysis (PEMWE). However, the strong hydrogen adsorption of Ru-based catalysts restricts its activity. Herein, a strategy is reported to tune the electronic structure and improve mass transfer by implanting Ru atoms onto the (002) facet of two-dimensional zeolitic imidazolate framework-67 (Ru@LZIF) to optimize the d-band center (ε) of Ru and the hydrogen spillover behavior.
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578, Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and Nanotechnology Department, (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
Photothermal therapy (PTT) utilizes near-infrared (NIR) light to enhance localized, non-invasive cancer treatments and drug delivery systems (DDS). Combination chemotherapy with PTT (chemo-PTT) offers multiple therapeutic advantages, involving synergistic effects, reduced side effects, and decreased drug toxicity. In this study, 2D titanium carbide (TiCT) MXene nanosheets were encapsulated in a zeolitic imidazolate framework-8 (ZIF-8) to form (MX-ZIF-8) nanoparticles (NPs) for PTT applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!