MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit.

Cell Death Differ

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong-Dan-San-Tiao, Beijing, China.

Published: March 2012

MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278736PMC
http://dx.doi.org/10.1038/cdd.2011.127DOI Listing

Publication Analysis

Top Keywords

cell differentiation
8
reciprocal regulatory
8
regulatory loop
8
differentiation
7
mir-181
4
mir-181 mediates
4
mediates cell
4
differentiation interrupting
4
lin28
4
interrupting lin28
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!