AI Article Synopsis

  • Ascorbate (AsA) is crucial for maintaining redox balance in plants and animals by neutralizing reactive oxygen species.
  • Three specific genes involved in AsA biosynthesis were successfully cloned and expressed in tomato plants, leading to notable increases in AsA levels, particularly with yeast-derived GMPase.
  • Despite varied results linked to the expression of MIOX2, the overall findings indicate that targeting the Smirnoff-Wheeler pathway could be an effective strategy for enhancing ascorbate content in tomatoes for biotechnological applications.

Article Abstract

Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff-Wheeler pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-011-1525-6DOI Listing

Publication Analysis

Top Keywords

biosynthesis pathways
8
solanum lycopersicum
8
gdp-mannose pyrophosphorylase
8
red fruit
8
green fruit
8
cell wall
8
asa
5
manipulation l-ascorbic
4
l-ascorbic acid
4
acid biosynthesis
4

Similar Publications

Plant chloroplasts store starch during the day, which acts as a source of carbohydrates and energy at night. Starch granule initiation relies on the elongation of malto-oligosaccharide primers. In Arabidopsis thaliana, PROTEIN TARGETING TO STARCH 2 (PTST2) and STARCH SYNTHASE 4 (SS4) are essential for the selective binding and elongation of malto-oligosaccharide primers, respectively, and very few granules are initiated in their absence.

View Article and Find Full Text PDF

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.

View Article and Find Full Text PDF

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.

View Article and Find Full Text PDF

Sexually dimorphic dopaminergic circuits determine sex preference.

Science

January 2025

Department of Neurology, the First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.

Sociosexual preference is critical for reproduction and survival. However, neural mechanisms encoding social decisions on sex preference remain unclear. In this study, we show that both male and female mice exhibit female preference but shift to male preference when facing survival threats; their preference is mediated by the dimorphic changes in the excitability of ventral tegmental area dopaminergic (VTA) neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!