Mouse embryonic carcinoma cells (P19 line) were studied for both their survival and developmental potential in the intact cerebellum of B6CBA mice. The P19 cells were cultured and labelled with green fluorescent protein using transfection. Cells were used for transplantation either in the undifferentiated stage or after 3 days of neurodifferentiation induced by retinoic acid. The intracerebellar application was performed in 43 mice: group A (N = 21) received neuroprogenitors and group B (N = 22) received undifferentiated cells. The morphology of transplanted cells within the context of the surrounding cerebellar tissue was evaluated after 3 weeks. Naive P19 cells engrafted and survived in the cerebellum of 7 of the 22 adult mice (survival rate 31.8 %). Neuroprogenitors survived in 13 of the 21 mice (survival rate was 61.9 %). Since the cut-off is P < 0.05, the difference is not statistically significant (P = 0.069). An expansive appearance of the graft was significantly more frequent (P = 0.0047) in naive P19 cells than in neuroprogenitors. In mice in which the grafts did not survive, no marks of grafted cells or only fluorescing detritus were found. In conclusion, this is the first study to track the fate and morphology of embryonic carcinoma cells transplanted into the cerebellum, confirming that neuroprogenitors derived from embryonic carcinoma cells can settle in the host tissue and differentiate according to the surrounding conditions. With further validation, the embryonic carcinoma cells could become a valuable model with which to study the impact of cell therapy on neurodegenerative diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

embryonic carcinoma
16
carcinoma cells
16
p19 cells
12
cells
11
intracerebellar application
8
b6cba mice
8
group received
8
naive p19
8
mice survival
8
survival rate
8

Similar Publications

MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies.

Mil Med Res

January 2025

Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.

Background: Radiofrequency ablation (RFA) is an efficient treatment with unlimited potential for liver cancer that can effectively reduce patient mortality. Understanding the biological process related with RFA treatment is important for improving treatment strategy. This study aimed to identify the critical targets for regulating the efficacy of RFA.

View Article and Find Full Text PDF

The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.

View Article and Find Full Text PDF

To establish and validate a nomogram based on clinical characteristics and metabolic parameters derived from F-fluorodeoxyglucose positron emission tomography and computed tomography (F-FDG PET/CT) for prediction of high-grade patterns (HGP) in invasive lung adenocarcinoma. The clinical and PET/CT image data of 311 patients who were confirmed invasive lung adenocarcinoma and underwent pre-treatment F-FDG PET/CT scan in Beijing Hospital between October 2017 and March 2022 were retrospectively collected. The enrolled patients were divided into HGP group (196 patients) and non-HGP group (115 patients) according to the presence and absence of HGP.

View Article and Find Full Text PDF

Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.

Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.

View Article and Find Full Text PDF

Liver masses are common in children, however primary malignant neoplasms are rare, representing only 1% of all pediatric cancers. Hepatocellular neoplasms are the most common primary liver malignancies and hepatoblastoma (HB) is the most frequently diagnosed. The incidence of HB, which is increasing, is approximately of 2 cases per million in the United States, followed by hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!