The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg(+) and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μgml(-1) for 33erg(+) and 128 μgml(-1) for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg(+) and its mutant erg-2 were 12.5°C and 11°C, respectively. After 128 μgml(-1) primycin treatment, these values increased to 17.5°C and 16°C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg(+) and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane "rigidizing" effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2011.09.020 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!