Reasons For Performing The Study: Antigenic and genetic drift of equine influenza (EI) virus is monitored annually by the Expert Surveillance Panel (ESP), which make recommendations on the need to update vaccines. Surveillance programmes are essential for this process to operate effectively and to decrease the risk of disease spread through the international movement of subclinically infected vaccinated horses. Not only is surveillance necessary to inform vaccine companies which strains are in circulation, but it serves as an early warning system for horse owners, trainers and veterinary clinicians, facilitating the implementation of appropriate prophylactic and control measures.
Objective: To summarise the genetic analysis of EI viruses detected in Ireland from June 2007 to January 2010.
Methods: The HA1 gene of 18 viruses was sequenced and phylogenetic analysis undertaken.
Results: All viruses belonged to the Florida sublineage of the American lineage. Clade 2 viruses predominated up to 2009. The viruses identified on 4 premises in 2007 displayed 100% nucleotide identity to A/eq/Richmond/1/07, the current clade 2 prototype. The first clade 1 virus was identified in November 2009 and, thereafter, clade 1 viruses were responsible for all the outbreaks identified. The Irish clade 1 viruses differ from the clade 1 virus responsible for the EI outbreaks in Japan and Australia in 2007. No virus of the Eurasian lineage was isolated during this surveillance period.
Conclusions: In 2010 the ESP recommended that the vaccines should not include a H7N7 virus or a H3N8 virus of the Eurasian lineage but that they should contain both a clade 1 and clade 2 virus of the Florida sublineage. The surveillance data presented here support these recommendations and indicate that they are epidemiologically relevant.
Potential Relevance: These data also serve as a scientific basis for investigating the source of epizootics and outbreaks both nationally and internationally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.2042-3306.2011.00472.x | DOI Listing |
PLoS One
January 2025
Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Arbovirology Unit, University of Ibadan, Ibadan, Nigeria.
Crimean-Congo haemorrhagic fever virus (CCHFV), a Biosafety level 4 pathogen transmitted by ticks, causes severe haemorrhagic diseases in humans but remains clinically silent in animals. Over the past forty years, Nigeria lacks comprehensive genetic data on CCHFV in livestock and ticks. This study aimed to identify and characterize CCHFV strains in cattle and their Hyalomma ticks, the primary vector, in Kwara State, Nigeria.
View Article and Find Full Text PDFPhytopathology
January 2025
Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia;
is a premium turf grass in warm temperate and subtropical regions of the world and is the most important turf species in Australia based on the value of its production. A new disease called buffalo grass yellows (BGY) has become a problem on turf farms in Australia. We surveyed turf farms in New South Wales (NSW), Queensland (Qld) and Western Australia to determine whether panicum mosaic virus (PMV) and sugarcane mosaic virus (SCMV) were associated with BGY.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
Background/objectives: In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved.
Methods: To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors.
Vaccines (Basel)
December 2024
Clinical Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, 00149 Rome, Italy.
Background: The recent resurgence of mpox in central Africa has been declared a new public health emergency of international concern (PHEIC) requiring coordinated international responses. Vaccination is a priority to expand protection and enhance control strategies, but the vaccine's need exceeds the currently available doses. Intradermal (ID) administration of one-fifth of the standard modified vaccinia Ankara (MVA-BN) dose was temporarily authorized during the 2022 PHEIC.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!