Monte Carlo (MC) simulation appears to be the only currently adopted tool to estimate global sensitivities and uncertainties in wastewater treatment modelling. Such models are highly complex, dynamic and non-linear, requiring long computation times, especially in the scope of MC simulation, due to the large number of simulations usually required. However, no stopping rule to decide on the number of simulations required to achieve a given confidence in the MC simulation results has been adopted so far in the field. In this work, a pragmatic method is proposed to minimize the computation time by using a combination of several criteria. It makes no use of prior knowledge about the model, is very simple, intuitive and can be automated: all convenient features in engineering applications. A case study is used to show an application of the method, and the results indicate that the required number of simulations strongly depends on the model output(s) selected, and on the type and desired accuracy of the analysis conducted. Hence, no prior indication is available regarding the necessary number of MC simulations, but the proposed method is capable of dealing with these variations and stopping the calculations after convergence is reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2011.453 | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, P.O Box 45124, Jazan, Saudi Arabia.
Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.
To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Dental Implantology, Jinan Stomatological Hospital, Jinan, 250002, Shandong, People's Republic of China.
Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).
Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!