Previously, we showed that the mouse LIM-domain only 4 (Lmo4) gene, which encodes a protein containing two zinc-finger LIM domains that interact with various DNA-binding transcription factors, attenuates behavioral sensitivity to repeated cocaine administration. Here we show that transcription of anaplastic lymphoma kinase (Alk) is repressed by LMO4 in the striatum and that Alk promotes the development of cocaine sensitization and conditioned place preference, a measure of cocaine reward. Since LMO4 is known to interact with estrogen receptor α (ERα) at the promoters of target genes, we investigated whether Alk expression might be controlled by a similar mechanism. We found that LMO4 and ERα are associated with the Alk promoter by chromatin immunoprecipitation and that Alk is an estrogen-responsive gene in the striatum. Moreover, we show that ERα knock-out mice exhibit enhanced cocaine sensitization and conditioned place preference and an increase in Alk expression in the nucleus accumbens. These data define a novel regulatory network involved in behavioral responses to cocaine. Interestingly, sex differences in several behavioral responses to cocaine in humans and rodents have been described, and estrogen is thought to mediate some of these differences. Our data suggest that estrogen regulation of Alk may be one mechanism responsible for sexually dimorphic responses to cocaine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197235 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3415-11.2011 | DOI Listing |
Front Mol Neurosci
December 2024
Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark.
Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Aim: Previous studies have demonstrated that Ras-related GTP-binding protein Rab10 (Rab10) plays a role in psychostimulant-induced behavioral effects. In this study, we showed that Rab10 in the nucleus accumbens (NAc) of male animals affects the development of cocaine-induced behavioral effects, which are associated with the plasma membrane expression of the GABA heteroreceptor (GABAR).
Methods: We performed flow cytometry, immunoendocytosis, pHluorin activity analysis, electrophysiology analysis, and open-field testing to explore the role of Rab10 in modulating the membrane expression and function of GABAR and its regulatory effect on cocaine-induced behavioral effects.
Neuropharmacology
March 2025
Department of Pharmacology and Physiology, Drexel University College of Medicine, USA. Electronic address:
Mol Psychiatry
November 2024
Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
Distinguishing the brain mechanisms affected by distinct addictive drugs may inform targeted therapies against specific substance use disorders (SUDs). Here, we explore the function of a drug-associated, transcriptionally repressive transcription factor (TF), ZFP189, whose expression in the nucleus accumbens (NAc) facilitates cocaine-induced molecular and behavioral adaptations. To uncover the necessity of ZFP189-mediated transcriptional control in driving cocaine-induced behaviors, we created synthetic ZFP189 TFs of distinct transcriptional function, including ZFP189, which activates the expression of target genes and exerts opposite transcriptional control to the endogenously repressive ZFP189.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea. Electronic address:
Behavioral sensitization is defined as the heightened and persistent behavioral response to repeated drug exposure as a manifestation of drug craving. Psychomotor stimulants such as cocaine can induce strong behavioral sensitization. In this study, we explored the effects of optogenetic stimulation of the prelimbic (PL) to the nucleus accumbnes (NAc) core on the expression of cocaine-induced behavioral sensitization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!