A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perfusion culture enhanced human endometrial stromal cell growth in alginate-multivalent integrin α5β1 ligand scaffolds. | LitMetric

Perfusion culture enhanced human endometrial stromal cell growth in alginate-multivalent integrin α5β1 ligand scaffolds.

J Biomed Mater Res A

Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.

Published: November 2011

A method to functionalize alginate by introducing monomeric or self-assembling (tetrameric) fibronectin (FN) domains is described, leading to a functional scaffold, which is used for three dimensional (3D) culture of human endometrial stromal cells (EnSCs). EnSCs encapsulated in the functional alginate were cultured under perfusion using the TissueFlex® platform, a multiple parallel microbioreactor system for 3D cell culture. The effect of the novel scaffold and the effect of perfusion were examined. Cell viability, proliferation, and extracellular matrix (ECM) deposition were determined and the results compared with those obtained with cells encapsulated in non-functionalized alginate, and also those without perfusion. Staining for focal adhesions and actin showed maximal cell adhesion only for alginate-tetrameric FN scaffolds under perfusion, associated with a significant increase in cell number over 7 days culture; in contrast to poor cell adhesion and a decrease in cell number for non-functionalized alginate scaffolds (irrespective of perfused/static culture) and 3D static culture (irrespective of the scaffold). Conjugation of alginate to FN was an absolute requirement to attenuate the loss of cell metabolic activity over 7 days culture. ECM deposition for blank alginate and alginate-monomeric FN was similar, but increased around 2-fold and 3-fold for alginate-tetrameric FN under static and perfusion culture, respectively. It is concluded that the requirement for EnSC engagement with multivalent integrin α5β1 ligands and perfused culture are both essential as a first step toward endometrial tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.33177DOI Listing

Publication Analysis

Top Keywords

perfusion culture
8
human endometrial
8
endometrial stromal
8
cell
8
integrin α5β1
8
culture
8
ecm deposition
8
non-functionalized alginate
8
cell adhesion
8
cell number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!