AI Article Synopsis

Article Abstract

MEK, a kinase downstream of Ras and Raf oncogenes, constitutes a high priority target in oncology research. MEK small molecule inhibitors cause soft tissue mineralization in rats secondary to serum inorganic phosphorus (iP) elevation, but the molecular mechanism for this toxicity remains undetermined. We performed investigative studies with structurally distinct MEK inhibitors GEN-A and PD325901 (PD-901) in Sprague-Dawley rats. Our data support a mechanism that involves FGF-23 signal blockade in the rat kidney, causing transcriptional upregulation of 25-hydroxyvitamin D(3) 1-alpha-hydroxylase (Cyp27b1), the rate-limiting enzyme in vitamin D activation, and downregulation of 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1), the enzyme that initiates the degradation of the active form of vitamin D. These transcriptional changes increase serum vitamin D levels, which in turn drive the increase in serum iP, leading to soft tissue mineralization in the rat.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfr263DOI Listing

Publication Analysis

Top Keywords

mek small
8
small molecule
8
molecule inhibitors
8
soft tissue
8
tissue mineralization
8
increase serum
8
phosphorous dysregulation
4
dysregulation induced
4
mek
4
induced mek
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!