Opposite effects of amphetamine on impulsive action with fixed and variable delays to respond.

Neuropsychopharmacology

Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.

Published: February 2012

Impulsive action, the failure to withhold an inappropriate response, is treated clinically with dopamine agonists such as amphetamine. Despite the therapeutic efficacy, these drugs have inconsistent effects on impulsive action in rodents, causing improvements or disruptions in different tasks. Thus, we hypothesized that amphetamine is producing an effect by altering distinct cognitive processes in each task. To test this idea, we used the response inhibition (RI) task and trained rats to withhold responding for sucrose until a signal is presented. We then varied the duration that subjects were required to inhibit responding (short=4 s; long=60 s; or variable=1-60 s) and examined whether this influenced the pattern of premature responses. We also tested the effects of amphetamine (0.0, 0.125, 0.25, 0.5, and 1.0 mg/kg) on each task variant. The probability of premature responding varied across the premature interval with a unique pattern of time-dependent errors emerging in each condition. Amphetamine also had distinct effects on each version: the drug promoted premature responding when subjects expected a consistent delay, regardless of its duration, but reduced premature responding when the delay was unpredictable. We propose that the ability to inhibit a motor response is controlled by a different combination of cognitive processes in the three task conditions. These include timing, conditioned avoidance, and attention, which then interact with amphetamine to increase or decrease impulsive action. The effect of amphetamine on impulsive action, therefore, is not universal, but depends on the subject's experience and expectation of the task demands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260977PMC
http://dx.doi.org/10.1038/npp.2011.236DOI Listing

Publication Analysis

Top Keywords

impulsive action
20
premature responding
12
effects amphetamine
8
amphetamine impulsive
8
cognitive processes
8
amphetamine
7
impulsive
5
action
5
task
5
responding
5

Similar Publications

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

In many real-life situations, decisions involve temporal delays between actions and their outcomes. During these intervals, waiting is an active process that requires maintaining motivation and anticipating future rewards. This study aimed to explore the role of the midbrain reticular formation (MRF) in delay-based decision-making.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Catch-Up Saccades in Vestibulo-Ocular Reflex Deficit: Contribution of Visual Information?

Ear Hear

December 2024

Institut national de la santé et de la recherche médicale, U1028, Centre National de Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Integrative Multisensory Perception and ACTion Team, Lyon, France.

Objectives: Catch-up saccades help to compensate for loss of gaze stabilization during rapid head rotation in case of vestibular deficit. While overt saccades observed after head rotation are obviously visually guided, some of these catch-up saccades occur with shorter latency while the head is still moving, anticipating the needed final eye position. These covert saccades seem to be generated based on the integration of multisensory inputs.

View Article and Find Full Text PDF

Fractionating impulsivity and reward-related phenotypes in adolescent mice.

Behav Brain Res

December 2024

Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA. Electronic address:

Adolescence is a developmental period characterized by changes in the brain and behavior, including heightened reward seeking, increased impulsivity, and elevated risk-taking behavior. It is also a sensitive period for the development of a number of behavioral and psychiatric disorders associated with pathological phenotypes of reward processing and impulsivity. Landmark human studies are charting the development of impulsivity and other reward-related phenotypes to identify the facets and timecourse of the adolescent phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!