Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236080PMC
http://dx.doi.org/10.1038/nature10489DOI Listing

Publication Analysis

Top Keywords

brain-machine-brain interface
8
brain-machine interfaces
8
activity recorded
8
artificial tactile
8
virtual-reality arm
8
icms feedback
8
icms
5
active tactile
4
tactile exploration
4
exploration brain-machine-brain
4

Similar Publications

Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study.

Front Neurosci

April 2018

Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China.

Action observation (AO) generates event-related desynchronization (ERD) suppressions in the human brain by activating partial regions of the human mirror neuron system (hMNS). The activation of the hMNS response to AO remains controversial for several reasons. Therefore, this study investigated the activation of the hMNS response to a speed factor of AO by controlling the movement speed modes of a humanoid robot's arm movements.

View Article and Find Full Text PDF

In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate.

View Article and Find Full Text PDF

This paper reports on the application of the Walsh-Hadamard transform (WHT) for data compression in brain-machine/brain-computer interfaces. Using the proposed technique, the amount of the neural data transmitted off the implant is compressed by a factor of at least 63 at the expense of as low as 4.66% RMS error between the signal reconstructed on the external host and the original neural signal on the implant side.

View Article and Find Full Text PDF

Restoration of function after brain damage using a neural prosthesis.

Proc Natl Acad Sci U S A

December 2013

Departments of Molecular and Integrative Physiology and Biostatistics, and Landon Center on Aging, Kansas University Medical Center, Kansas City, KS 66160.

Neural interface systems are becoming increasingly more feasible for brain repair strategies. This paper tests the hypothesis that recovery after brain injury can be facilitated by a neural prosthesis serving as a communication link between distant locations in the cerebral cortex. The primary motor area in the cerebral cortex was injured in a rat model of focal brain injury, disrupting communication between motor and somatosensory areas and resulting in impaired reaching and grasping abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!