After fertilization, lineage specification is governed by a complicated molecular network in which permissiveness and repression of expression of pluripotency- and differentiation-associated genes are regulated by epigenetic modifications. DNA methylation operates as a very stable repressive mark in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE. Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse. In contrast, ELF5 was exclusively expressed in the TE and was correspondingly hypomethylated in this tissue. In NPCs, we observed down-regulation of NANOG and OCT4 expression, which correlated with hypermethylation of their promoters, whereas VIMENTIN displayed up-regulation in accordance with hypomethylation of its promoter. In conclusion, DNA methylation is an inconsistently operating epigenetic mechanism in porcine E10 blastocysts, whereas in porcine epiblast-derived NPCs, expression of pluripotency-associated and differentiation genes appear to be regulated by this modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/epi.6.9.16954 | DOI Listing |
Epigenetics Chromatin
January 2025
Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361, Bron, F-69500, France.
Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Am J Case Rep
January 2025
Research Institute of Dentistry, Department of Integral Dental Clinics, University Center of Health Sciences, Universidad de Guadalajara, Guadalajara, Mexico.
BACKGROUND Cowden syndrome is a genetic disorder that predisposes individuals to cancer and is characterized by hamartomas derived from 3 germ layers. Although the clinical signs can be pathognomonic, diagnosis is often aided by biopsies, histopathological examination of oral and cutaneous lesions, and genetic studies, including multiple ligation-dependent probe amplification (MLPA). CASE REPORT We report a case of a 35-year-old woman who manifested with multiple lesions in the buccal mucosa, dorsum of the tongue, and gums, along with papillomatous papules on her facial skin and the dorsal surfaces of her hands.
View Article and Find Full Text PDFStem Cell Res
December 2024
Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:
Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain.
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!