Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry.

Analyst

Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.

Published: November 2011

Similar to its popular older cousins of fullerene and carbon nanotubes (CNTs), the latest form of nanocarbon, graphene, is inspiring intensive research efforts in its own right. As an atomically thin layer of sp(2)-hybridized carbon, graphene possesses spectacular electronic, optical, magnetic, thermal and mechanical properties, which make it an exciting material in a variety of important applications. In this review, we present the current advances in the field of graphene electroanalytical chemistry, including the modern methods of graphene production, and graphene functionalization. Electrochemical (bio) sensing developments using graphene and graphene-based materials are summarized in more detail, and we also speculate on their future and discuss potential progress for their applications in electroanalytical chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1an15661fDOI Listing

Publication Analysis

Top Keywords

electroanalytical chemistry
12
graphene graphene-based
8
graphene
7
graphene-based nanomaterials
4
nanomaterials promising
4
promising materials
4
materials bright
4
bright future
4
future electroanalytical
4
chemistry popular
4

Similar Publications

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ).

View Article and Find Full Text PDF

Flexible disk ultramicroelectrode: Facile preparation and high-resolution scanning electrochemical microscopy imaging.

Anal Chim Acta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China. Electronic address:

Background: Scanning electrochemical microscopy (SECM) is a kind of scanning probe technology that enables the obtainment of surface morphology and electrochemical information by recording changes in Faraday current triggered by the movement of probe.

Results: In this work, flexible disk ultramicroelectrode (UME) with highly repeatable geometry are fabricated through a simple and universal strategy that involves vacuum pulling the glass capillaries inserted with platinum wire (gold wire, carbon fiber, etc.), followed by a rapidly heated sealing and polishing process.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are considered reliable biomarkers for a variety of diseases. However, their low abundance in organisms and high sequence similarity of homologous miRNAs make their accurate detection challenging. Here, we constructed a novel fluorescent biosensor for the detection of miRNA-155, a potential biomarker of neuroinflammation, based on duplex-specific nuclease (DSN) assisted amplification and DNA-templated silver nanoclusters (DNA-AgNCs) as fluorescence signal probes.

View Article and Find Full Text PDF

Single-electrode electrochemiluminescence immunosensor for multiplex detection of Aquaporin-4 antibody using metal-organic gels as coreactant.

Biosens Bioelectron

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China. Electronic address:

Reliable detection of Aquaporin-4 (AQP4) antibodies is crucial for diagnosing Neuromyelitis Optica spectrum disorder (NMOSD). However, cell-based assays, the most reliable approach, are limited by inadequate instruments. This study reports the use of silver metal-organic gels (Ag-MOGs) as coreactants in a single-electrode electrochemical system (SEES)-based electrochemiluminescence (ECL) immunosensor for multiplex detection of AQP4 antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!