A versatile and highly sensitive probe for Hg(II), Pb(II) and Cd(II) detection individually and totally in water samples.

Biosens Bioelectron

Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, PR China.

Published: December 2011

The detection of heavy metal ions using enzyme-linked immunosorbent assays (ELISA) has been reported by several research groups. However, highly sensitive and selective detection of total heavy metal ions using ELISA is a major technical limitation. Here we describe the development of a versatile and highly sensitive probe combining goat anti-mice IgG, colloidal gold nanoparticles (AuNPs) and horseradish peroxidase (HRP). We demonstrate the utility of this probe using three kinds of heavy metal complete antigens and three monoclonal antibodies (McAbs) in one ELISA system to establish a high-throughput screening protocol. The procedure was successfully applied to analysis of Hg(II), Pb(II) and Cd(II) individually and totally from different water samples. The sensitivities for the detection of Hg(II), Pb(II) and Cd(II) individually and totally are 27.4, 3.9, 15.8 and 18.2 nM, respectively. And all limit of detection (LODs) are lower than 1.2 nM. The recovery results obtained from the developed technique showed a good correlation (R(2)=0.983) with those from ICP-MS. The major advantage of the probe is the versatility and high sensibility. The probe could be potentially used, upon demand, as a sensitive and versatile detector for a broad range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2011.08.034DOI Listing

Publication Analysis

Top Keywords

highly sensitive
12
hgii pbii
12
pbii cdii
12
individually totally
12
heavy metal
12
versatile highly
8
sensitive probe
8
totally water
8
water samples
8
metal ions
8

Similar Publications

RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.

View Article and Find Full Text PDF

A mitochondria-targeted iridium(III) complex-based sensor for endogenous GSH detection in living cells.

Analyst

January 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate.

Mikrochim Acta

January 2025

Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.

View Article and Find Full Text PDF

Multifunctional devices based on van der Waals heterojunctions have drawn significant attention owing to their portable size, low power consumption and various application scenarios. However, high fabrication equipment requirements, complex device structures and limited operating conditions hinder their potential value. Herein, multifunctional UV photodetect-memristors based on GaS/graphene/GaN van der Waals heterojunctions area selective deposition have been proposed for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!